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A B S T R A C T

In this paper, we introduce a novel multi-view image denoising algorithm using 3D focus image stacks (3DFIS) to
exploit image redundancy within and across views. Robust disparity map is first estimated using the 3DFIS with
texture-based view selection and patch-size variation scheme. Leveraging both 3DFIS and the estimated disparity
map, the proposed algorithm effectively denoises the target view from multiple views through a low rank
minimization approach that incorporates robust similarity metrics and occlusion handling techniques. The paper
combs through a number of existing image denoising methods, including the preliminary results in our earlier
research efforts, and then details the ways, means and merits of our proposed algorithm. With extensive ex-
periments, we conclude that this novel algorithm is superior over various existing state-of-the-art approaches in
terms of both visual and quantitative performance.

1. Introduction

With increasing popularity of camera networks and multi-camera
imaging devices, multi-view image processing has become a key en-
abling tool for applications such as 3D scene reconstruction, object
tracking and recognition, environmental surveillance, and 3DTV
(Zhang, 2007). For example, while the prevalence of stereoscopic dis-
play has greatly enriched people's entertainment life, the application of
multi-camera system in laparoscopic surgery has also expedited surgical
tasks and improved safety of surgical procedures (Kanhere et al., 2014).
In these applications, the availability of multiple views of the scene
significantly extends the capability of imaging system by exploiting the
3D information behind the observed scene, and substantially enhances
the performance.

Multi-view images are often captured with a camera array that
consists of multiple cameras con as a regular geometric array.
Compared with those expensive bulky digital single-lens reflex (DSLR)
cameras, cameras in a camera array often have limited exposure and
small aperture, for its flexibility and portability. As such, images cap-
tured by such cameras may be degraded due to image sensor granular
noise, lower resolution, and even geometric distortion. The presence of
noise not only degrades the perceptual image quality, but may also
impede further image processing procedures including segmentation,
super resolution, object detection, etc. Furthermore, the processing of
3D information from multi-view images, such as stereo matching and
3D reconstruction, may also be restrained.

Traditional denoising methods (described in more details in

Section 2) generally call for reconstructing a cleaner patch from
neighboring blocks of the same image to replace the noisy patch. These
methods aim to search for intra-view similarities within image for re-
moving the noise. However, as some unique textures in the image may
not have corresponding similar patches, such methods often suffer from
patch mismatches. With a set of multi-view images, both intra-view and
inter-view similarities can be exploited to reduce the noise and re-
construct the clean image.

In this paper, the task of multi-view image denoising is considered.
Given a set of noisy multi-view images, our goal is to remove the noise
from the target view, which is one of the multi-view images, using noisy
images from other viewpoints. Taking advantage of the 3D focus image
stacks (3DFIS) and occlusion handling techniques in our previous works
(Zhou et al., 2015,2017), this paper introduces a number of novel im-
provements in both disparity estimation and denoising. Specifically, our
main contributions include:

• A new algorithm that appropriately selects views and patch sizes
with respect to the texture map to enhance the accuracy of esti-
mated disparity map, resulting in an improved denoising perfor-
mance. (Section 4).

• A novel robust similarity metric and searching strategy based on
patch volumes to reduce patch mismatches, and improve computa-
tional efficiency. (Section 5.2).

• A low-rank minimization denoising scheme applied to selected noisy
multi-view image patches that yields superior denoising perfor-
mance. (Section 5.3).
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• A set of new optimization strategies including book-keeping that
have remarkably accelerated the computational speed of the algo-
rithm. (Section 5).

Through extensive experiments, we demonstrate that these novel
procedures greatly enhance the denoising performance over state-of-
the-art single-view and multi-view image denoising methods, including
our preliminary works (Zhou et al., 2015; Zhou et al., 2017).

The rest of this paper is organized as follows. The related work in
multi-view image denoising is discussed in Section 2. A comprehensive
introduction of 3DFIS is provided in Section 3. A robust multi-view
disparity estimation algorithm is presented in Section 4. Detailed multi-
view denoising procedures are described in Section 5. Experimental
results and discussions are presented in Section 6. Conclusion and fu-
ture works are in Section 7.

2. Related work

Existing image denoising methods process images in either the
spatial domain or the transform domain. The former directly manip-
ulates pixels in the spatial domain and estimates pixel values utilizing
those of neighboring pixels. Examples of spatial domain denoising
techniques include Gaussian filtering (Shapiro and Stockman, 2001),
anisotropic filtering (Yang et al., 1995), bilateral filtering (Tomasi and
Manduchi, 1998), and least-mean-square filtering (Widrow and
Haykin, 2003), etc. These spatial filters attain high efficiency when
image noise is low. As noise level increases, the performance of these
filters degrades rapidly. In addition to above local filters, non-local
approaches have been introduced to improve the denoising quality
under high level of noise. Buades et al. (2005) proposed a non-local
mean (NLM) filtering method that searches for similar patches from the
entire image, instead of local neighborhood, and then uses the weighted
average of these similar patches to estimate the denoised patch. K-SVD
(Aharon et al., 2006) is another kind of spatial denoising technique that
employs sparse coding and dictionary learning. The transform domain
methods convert the image into transform domain using various
transforms like DCT, wavelets, curvelets, etc., accompanied with de-
noising operations on transform domain coefficients. Typical examples
of transform domain denoising methods include Wiener filtering
(Wiener, 1949), wavelet-based techniques (Portilla et al., 2003;
Eslami and Radha, 2003), and dictionary-based techniques (Elad and
Aharon, 2006; Yan et al., 2013). The state-of-the-art performance is
achieved with the combination of spatial and transform domain tech-
niques. Dabov et al. (2007) proposed a block-matching 3D (BM3D)
algorithm that groups similar 2D patches into 3D arrays and transforms
the 3D array into 3D transform domain. Then collaborative filtering is
performed in the 3D transform domain using Wiener filter, followed by
an inverse 3D transform that produces the estimation of grouped
blocks. Zhang et al. (2010) grouped similar local pixels in their LPG-
PCA method, and then ran coefficient shrinkage in the principal com-
ponent analysis (PCA) domain. Gu et al. (2014) proposed to exploit the
image non-local similarity by solving a weighted nuclear norm mini-
mization (WNNM) problem.

Distinct from above single image denoising methods, multi-view
image denoising approaches may leverage depth information inferred
from disparities among multi-view images to further enhance perfor-
mance. Zhang et al. (2009) proposed to collaboratively denoise grouped
similar patches by applying PCA or tensor analysis, and then restore the
denoised image from denoised patches. These patches are grouped by
considering similarity between corresponding patches in all other views
using depth estimation. Based on the principle of Zhang et al. (2009),
Thite and Zhang (2014) proposed to improve the denoising perfor-
mance and computational complexity by using NLM to the multi-view
images that is intuitively parallel and available for GPU acceleration.
Similarly, Luo et al. (2013) presented an adaptive NLM that also adopts
a robust joint-view distance metric to measure the similarity of patches

and estimates an optimal number of patches to be used for denoising.
Xue et al. (2010) employed BM3D and applied a patch-based multi-
view stereo (Furukawa and Ponce, 2010) model reconstruction algo-
rithm to identify feature points and facilitate search of similar patches
in other views. Patches with smallest geodesic distances are selected for
Wiener filtering. Yue et al. (2015) developed a two-stage strategy by
exploring internal and external patch correlations for both single image
and multi-view denoising.

Above multi-view denoising methods require exhaustive searching
for similar patches across all views and are extremely computationally
expensive. Instead, Miyata et al. (2014) introduced a fast multi-view
image reconstruction algorithm based on plane sweeping (PS)
(Collins, 1996). Using PS, the multi-focus images (MFI) and disparity
map can be estimated, and denoising is achieved by selecting the in-
focus pixels from the MFIs. Along this direction, Kodama and
Kubota (2014) proposed to transform the synthesized MFIs into 2D
frequency domain and apply a linear filter to suppress noise. Denoised
images are then obtained by taking the inverse 2D transform. Since no
exhaustive block matching is required, these algorithms promise sig-
nificant computation reduction compared to the block matching
methods. However, this speed improvement comes at the expense of
degrading denoising quality. For example, the quality of the denoised
image obtained by Miyata et al. (2014) does not show noticeable im-
provement over the conventional NLM method, not to mention the
state-of-the-art BM3D.

Noticing the various limitations existing in the related approaches,
our earlier efforts focused on developing the 3DFIS data structure and
applying it to multi-view image denoising (Zhou et al., 2015, 2017). To
advance what we have achieved, in this work, we present a compre-
hensive development and analysis of a new 3DFIS-based multi-view
image denoising algorithm that is much improved from our earlier
preliminary results. This new algorithm not only achieves better per-
formance compared to existing state-of-the-art denoising algorithms,
but also attains dramatic computation time reduction compared to
those reported in Zhou et al. (2017).

3. 3D focus image stacks

In this section, we give a general background of multi-view image
model and introduce the notion of 3D focus image stacks (3DFIS) under
the multi-view image settings.

3.1. Multi-view images and noise model

We assume the multi-view images are acquired from a dense, planar
rectangular array of cameras. Cameras are placed at grid points (s, t) ∈
Z2 which is a set of 2D indices of the camera array, and the grid size (in
units of world coordinates) is Lx× Ly. The camera located at (0, 0) will
be designated as the reference camera (target view) against which the
multi-view images taken by neighboring cameras in the array will be
aligned. The optical axis of each camera is parallel to the normal vector
of the plane where the cameras are placed. The images are taken using
identical focal length f. We further denote lx and ly to be the sizes of a
pixel in x and y directions.

The intensity of the pixel located at (x, y) coordinate of the image
taken from camera (s, t) is expressed as:

= ′ +I x y I x y n x y( , ) ( , ) ( , )s t s t s t, , , (1)

where I's, t is the noiseless image and ns,t is i.i.d. zero-mean Gaussian
noise with variance σ2, i.e. ns,t(x, y) ∼ N(0, σ2). In this work, we assume
the noise variance is readily known, since multiple literature
(Rank et al., 1999; Liu et al., 2006; Liu et al., 2013) have already been
proposed for accurate noise estimation. Our objective is to obtain a
denoised image Iest at the target view (0, 0) given the set of multi-view
images {Is,t(x, y), (s, t) ∈ Z2}. Furthermore, we assume the knowledge of
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I'0,0(x, y) in our experiments, so that the quality of denoising can be
measured using

=
∑ ′ −

PSNR
I x y I x y

10 log 255
( , ) ( , )N x y est

10

2

1
, 0,0

2
(2)

where N is the total number of pixels in the image.
To denoise an image using multiple views taken from different

viewpoints, the intuitive perspective is to gather redundant informa-
tion, usually in form of similar patches, from the multiple views, and
then perform denoising procedures to reduce the noise. In the process of
gathering similar patches, conventional denoising algorithms, like NLM
and BM3D, mostly conduct exhaustive searching in a certain region and
compare patch appearance (in terms of Euclidean norm) to find the
most similar patches. Such exhaustive searching is extremely time
consuming, especially when searching range is extended to multiple
views.

In this work, we choose to construct an image data structure called
3D focus image stacks (3DFIS) (Zhou et al., 2015) to facilitate efficient
similar patch gathering. In the 3DFIS, corresponding pixels in different
views are aligned as a column in the corresponding image stack, thus
enabling efficient similar patch grouping. The disparity is the key to
locate the correct 3DFIS stack for each pixel such that patch grouping
can be carried out without exhaustive searching over all stacks.
Therefore, the general framework of our denoising algorithm can be
described as follows: first a series of 3DFIS corresponding to various
candidate disparity values are constructed. Next, we estimate the dis-
parity map of the target view from the 3DFIS. For each pixel, its cor-
responding 3DFIS is extracted using the disparity value and similar
patches can be gathered without exhaustive searching. Finally, we
perform the denoising operations on the grouped similar patches. De-
tails of the algorithm and principles behind it will be elaborated in the
following sections.

3.2. 3D focus image stack

Since the set of multi-view images are acquired from a camera
array, the pixel locations corresponding to a common 3D point p at a
pair of images on the (0, 0) and (s, t) views will differ by an amount
known as the disparity. In particular, if pixel (x, y) on the reference view
corresponds to point p on the object surface at depth Z, and (x’, y’ ) is its
corresponding point on a different view (s, t), then using similar tri-
angles, we have I0,0(x, y)≈ Is,t(x’, y’), if

′ = + = +x x s L f Z l x s d·[ · /( · )] · , andx x x (3a)

′ = + = +y y t L f Z l y t d·[ · /( · )] ·y y y (3b)

where Lx, Ly and lx, ly stand for distances between cameras and pixel
sizes in the x, y direction as defined previously, and dx, dy are disparity
values (in units of number of pixels) in the x, y direction. The [⋅] op-
erator rounds its content to nearest integer. For simplicity of

presentation, we assume that the cameras are placed at equal distances
and pixels are square, i.e. Lx= Ly= L and lx= ly= l, then

= = =d d f L l Z d[ ·( / )/ ]x y (4)

Eq. (4) indicates that disparity d is inversely proportional to the
depth Z. Since disparities are integer values, each d is quantized from a
range of values [f·(L/l)/Z – 0.5, f·(L/l)/Z+0.5). In other words, each
disparity d corresponds to a collection of depth values, which has the
range

=
−

−
+

=
−

>Z
f L l

d
f L l

d
f L l

d
dΔ

·( / )
0.5

·( / )
0.5

·( / )
0.25

, 02 (5)

According to Eqs. (4) and (5), as the disparity d increases, the object
gets closer to the camera and the range of depth covered becomes
smaller, and vice versa. Since normal lenses cannot focus if an object is
too close, it is reasonable to set up a maximum value dmax for disparity d
such that d≤ dmax.

For each disparity value d (1≤ d≤ dmax), we stack up the set of
multi-view images {Is,t(x, y); (s, t) ∈ Z2} as follows: Assume there are K
cameras in the camera array and each one corresponds to a grid point
(s, t), i.e. there is a unique mapping from (s, t) to an integer k such that
1≤ k≤K, then for each 1≤ d≤ dmax, each image Is,t(x, y) at view (s, t)
is shifted by (sd, td) and stacked upon each other to form a three-di-
mensional matrix

= + +F x y k I x sd y td( , , ) ( , )d
s t, (6)

The 3D matrix Fd(x, y, k) is called a 3D focus image stack (3DFIS)
with respect to disparity value d. According to Eqs. (3) and (4), for a
pixel (x, y) in the reference view, its corresponding points in other
views at (s, t) coordinates are displaced by -sd and -td in the x and y
direction. Therefore, if the (x, y) pixel at the reference view I0,0 has the
true disparity value equal to d, its corresponding points in other views
will be shifted to the same position in the 3DFIS Fd. Consequently, the
entire column of the Fd at position (x, y), denoted by Fd(x, y,:), should
have the same pixel value, that is,

= ×F x y I x y 1( , , :) ( , )·d
K0,0 1 (7)

where 1 K×1 is a vector consisting of all 1 s. We call such a pixel as an
in-focus pixel because the true focal plane at this pixel has a disparity
value d. On the other hand, if the true focal plane's disparity value is not
d, then entries in the column vector Fd(x, y,:) may not have the same
value. Likewise, we call such a pixel as an out-of-focus pixel.

For demonstration purpose, we adopt a simple three-view system, as
shown in Fig. 1, to illustrate the process. The reference point (x0, y0) in
the center view (shown in black, s=0) has the true disparity value d,
and its corresponding points in the two side views (shown in red and
blue) are denoted as (x-1, y-1), (x+1, y+1). The views are then shifted
using Eq. (6) to form the 3DFIS. If the views are shifted by d, the three
corresponding points will be moved to the same position and form a
stacked column of pixels in the 3DFIS, which means the pixel is in-focus

Fig. 1. Illustration of 3DFIS construction using a three-view system. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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in this 3DFIS. On the other hand, if the views are shifted by some other
amount, namely d’, then the three corresponding points will not be in
the same position and they become out of focus.

Derivatives of 3DFIS, such as the multi-focus image (MFI), have been
applied to multi-view/light-field restoration and rendering
(Miyata et al., 2014; Kodama and Kubota, Oct. 2014; Takahashi and
Naemura, 2006). A MFI with respect to a disparity d is an average of
Fd(x, y, k) over all views for each pixel (x, y):

∑=
=

I x y
K

F x y k( , ) 1 ( , , )d

k

K
d

1 (8)

As shown in Fig. 2, MFI can be regarded as a 2D visualization of the
corresponding 3DFIS. Clearly, regions containing in-focus pixels appear
to be crisp and clear while regions corresponding to out-of-focus pixels
appear to be blurred.

The MFI computed from 3DFIS can be used to estimate disparity
map using a procedure called plane sweep (PS) (Collins, 1996), which is
an approach of analyzing multi-view images by projecting them onto
multiple focal planes in the 3D scene using the homography induced by
the focal planes. To apply PS, the matching cost for each pixel (x, y) and
each disparity d is computed using the sum of absolute difference (SAD)
between each MFI and the reference view, as shown below

∑= −
∈

C x y d
n

I i j I i j( , , ) 1 ( , ) ( , ) ,
p i j N x y

d

( , ) ( , )
0,0

(9)

where N(x, y) is the square patch centered at (x, y), and np is the
number of pixels in N(x, y). The disparity value of pixel (x, y) can then
be estimated as

̂ =d x y C x y d( , ) arg min ( , , )
d (10)

4. Disparity map estimation

Disparity map is an essential tool to extract the corresponding 3DFIS
for each pixel during denoising process, so that patch matching can be
conducted in selected image stack. Different from previous approaches
(Zhang et al., 2009; Thite and Zhang, 2014; Miyata et al., 2014;
Zhou et al., 2015; Takahashi and Naemura, 2006), we propose an im-
proved multi-view disparity estimation algorithm that is robust to noise
and yields superior disparity map under noisy conditions. This algo-
rithm incorporates a robust matching cost, a texture-based view selec-
tion, and patch size variation scheme.

4.1. Disparity estimation with robust matching cost

Existing MFI-based multi-view depth estimation methods
Miyata et al., 2014; Takahashi and Naemura, 2006) first compute a set
of multi-focus images (MFI) with a known set of candidate disparity
values. Then for each pixel, the disparity value is estimated using a
procedure described in Eqs. (9) and ((10). This approach, while simple,
often yields noisy, spurious disparity map with diminishing utilities as
noise level increases. To improve the robustness of disparity estimation,
we introduce a matching cost that is robust to noise.

For each pixel (x, y) and the supporting window W centered at it, let
us denote by vdk a patch vector containing all pixel values within

window W of kth view in the focus image stack Fd. For convenience, let
vd1 be the patch vector corresponding to the reference view. We then
compute the vector difference between the kth view (k> 1) and re-
ference view (k=1):

= − ≤ ≤∼ k Kv v v , 2k
d

k
d d

1 (11)

Next, we sort the sequence {||ṽdk||1; 1≤ k≤K} in increasing order
such that k→ k’, ||ṽdk’ ||1≤ ||ṽdk’+1||1. Here, ||ṽdk||1 is the sum of abso-
lute values of each element in ṽdk. Define the matching cost as the mean
absolute difference of h best ||ṽdk’ ||1 (1< h≤ K) as

∑=
−

∼
′=

′C x y d
n h

v* ( , , ) 1
( 1)

,
p k

h

k
d

2
1 (12)

where np is the number of pixels in patch vector vdk. The use of a patch
vector instead of a single pixel in computing the cost function is based
on an assumption that the disparity map is piecewise planar. Therefore,
neighboring pixels are very likely to have the same disparity value,
except at object boundaries where disparity values may change. Among
all cost functions computed, the disparity value for pixel (x, y) is esti-
mated as

̂ =d x y C x y d*( , ) arg min *( , , )
d (13)

In Appendix A, we show that the matching cost C* in Eq. (12) is
greater than or equal to the C in Eq. (9), if h=K, with equality holds
when d is the true disparity, i.e. Eq. (7) holds. In other words, patch
mismatches tend to produce higher cost in Eq. (12), and thus the pro-
posed matching cost makes it easier to distinguish the true disparity
from all other candidates, making the disparity estimation more robust
to noise.

In Eq. (12), the choice of h is critically important to the accuracy of
the estimated disparity map. If a view is occluded by another object due
to discontinuities in the disparity map, serious bleeding artifacts as il-
lustrated in Fig. 5(a) and (b) may degrade the quality of the estimated
disparity map. Previously, Kang et al. (2001) proposed to use the best
50% of the frames (views) in computing the matching cost. Assuming
the ground truth disparity map is available, we conducted an experi-
ment comparing the number of erroneous pixels in estimated disparity
maps against the number of views used, with the results plotted in
Fig. 3. Note that the number of views that yields minimum disparity

Fig. 2. 2D visualization of 3D focus image stacks: (a) disparity= 5; (b) disparity= 6; (c) disparity= 10; (d) disparity= 14.

Fig. 3. Number of erroneous pixels in disparity maps estimated using different
number of views.
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estimation error is 16, which is greater than 12 or 13, i.e. 50% of 25
views. Hence, the value of h needs to be dynamically estimated for each
pixel location. In practice, it is impossible to precisely identify the oc-
cluded regions and determine which view should be excluded. How-
ever, intuitively, occlusion often occurs at object boundaries and edges
that may be identified using texture information of the image. There-
fore, we propose a dynamic view selection procedure based on the
texture analysis of the reference view.

Apart from view selection, we also consider the patch size used in
computing the matching score. If the patch size is too small, details of
edge formations may be revealed, but low-texture/flat regions are more
corrupted with noisy artifacts due to the lack of features. With a larger
patch size, the estimation is more robust to noise but at the cost of
losing details at edges and boundaries. In this work, we propose a
method to vary patch size selections based also on the texture analysis
of the image.

4.2. Texture map estimation from multi-view images

Previously in Section 3.2, it is mentioned that the column vector
Fd(x, y,:) should have the same intensity value if the true disparity value
at (x, y) is d, and vice versa. In other words, the variance of vector Fd(x,
y,:) is small only when the true disparity at pixel location (x, y) is d.
However, this is only true for high-texture regions, where edges and
pixel intensity variations are prevalent. In low-texture regions, due to
the homogeneity of pixel values within the neighborhood, column
vector Fd(x, y,:) tends to contain similar values no matter whether the
true disparity is d or not. This in turn makes the variance of Fd(x, y,:)
remain relatively small for all disparity values. This phenomenon in-
spires us to represent the strength of textures from the variance or
standard deviation of 3DFIS.

Given 3DFIS Fd(x, y, k), the standard deviation σd(x, y) is obtained
for each pixel (x, y) as

∑= −
=

σ x y
K

F x y k F x y( , ) 1 ( ( , , ) ( , ))d

k

K
d d

1

2

(14)

where F̅d(x, y) is the mean value of vector Fd(x, y,:). Then the strength of
textures at (x, y) is defined as

∑=
=

x y
d

σ x yΣ( , ) 1 ( , )
d

d
d

max 1

max

(15)

where dmax is the maximum of candidate disparity values, as mentioned
in Section 3.2. To further reduce the impact of noise, we also apply a
smoothing filter (e.g. Gaussian) to each standard deviation σd. Fig. 4
shows an example of texture map of a multi-view dataset, where bright
colors (large values) represent high textures, while low textures are
identified as dark colors (small values).

4.3. Texture-based view selection and patch size variation

With the texture map, both patch sizes and number of views to be
selected can be estimated accordingly. Assume the patch size L may
range from Lmin× Lmin to Lmax× Lmax. Intuitively, the texture strength

at pixel (x, y), Σ(x, y), as defined in Eq. (15), decreases in flat areas,
meaning a larger patch size is needed to capture the intensity fluctua-
tion of patches. In textured regions, Σ(x, y) tends to increase and a
relatively small patch size is sufficient for disparity estimation. Conse-
quently, we are seeking a linear relationship between L(x, y) and Σ(x, y)
such that L(x, y) increases as Σ(x, y) decreases and vice versa, whilst
being bounded by Lmin and Lmax when Σ(x, y) reaches some pre-de-
termined upper and lower thresholds (denoted by Σu and Σl). The
maximum patch size Lmax is used when Σ(x, y)≤ Σl, and the minimum
patch size Lmin is used when Σ(x, y)≥ Σu. These two thresholds Σu and
Σl are dependent on image noise level σ since noise may have an in-
fluence on the texture estimation. Further discussions on Σu and Σl are
addressed in Section 6.1. Based on above considerations, the patch size
L(x, y) can be expressed as a linear function of the texture strength Σ(x,
y):

=
⎧

⎨
⎪

⎩⎪

≤

+ < <

≥

−
−

−
−L x y

L x y

x y x y

L x y

( , )

, Σ( , ) Σ

·Σ( , ) , Σ Σ( , ) Σ

, Σ( , ) Σ

l
L L L L

l u

u

max

Σ Σ
Σ · Σ ·

Σ Σ

min

l u
l u

l u
max min min max

(16)

Similarly, view selection can also be defined as a function of texture
strength Σ(x, y). On the basis of Eq. (16), we may directly estimate the
number of selected views V(x, y) from the patch size L(x, y) as shown in
Eq. (17) below. In this equation, the value of V(x, y) varies from K, the
total number of views, down to 0.5 K.

=
⎧

⎨
⎪

⎩⎪

=

+ < <

=
−

−
−V x y

K L x y L

L x y L L x y L

K L x y L
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The evaluation criteria for measuring the quality of disparity map is
the error percentage, which is defined as

∑= ≠
=

Err d
N

d i d i( ) 1 ( ( ) ( ))est
i

N

est gt
1 (18)

where dest is the estimated disparity map, dgt is the ground truth, and N
is the total number of pixels in the image. The effectiveness of dynamic
patch size variation and view selection is illustrated in Fig. 5(a)–(d).
With the robust view selection and patch size variation process im-
plemented, we see the error percentage of estimated disparity maps
dropping from over 33% to below 20%.

In Fig. 6, the proposed method is compared with other conventional
stereo and multi-view disparity estimation algorithms (Miyata et al.,
2014; Zhou et al., 2015; Taniai et al., 2016; Lee et al., 2015; Klaus et al.,
2006). In this experiment, images are corrupted by noise with a noise
level σ=20. Fig. 6(a) is the top stereo matching method in Middlebury
stereo benchmark proposed by Taniai et al. (2016), while (b) and (c)
are also state-of-the-art stereo algorithms in recent years. The results of
previous multi-view algorithms are shown in Fig. 6(d) and (e), in-
cluding our preliminary results (Zhou et al., 2015). The result of pro-
posed method is shown in Fig. 6(f), which demonstrates clear im-
provement in terms of both visual and quantitative quality. The
significance of accurate disparity map estimation to multi-view image

Fig. 4. (a) Noisy image; (b) texture map.
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denoising will be discussed in Section 6.4. The proposed multi-view
disparity estimation algorithm is summarized in Algorithm 1.

5. Multi-view image denoising

In this section, we present the proposed multi-view denoising al-
gorithm using disparity map and 3DFIS. For each pixel (x, y) in the
target view, its value is estimated from aggregation of multiple de-
noised patches that cover this pixel. The value of a denoised patch will
be computed using low-rank minimization of a set of “similar” patches
judiciously selected from the 3DFIS corresponding to the estimated
disparity of the patch. Compared with previously reported results (Zhou
et al., 2015,2017), the proposed multi-view denoising algorithm em-
ploys the following procedures that result in significant performance
enhancement:

• A depth (disparity) guided adaptive window selection procedure

with book-keeping strategy is implemented to select patches having
consistent texture with the reference patch from the 3DFIS.

• A robust similarity metric that is resilient to noise interference while
facilitating more efficient similar patch searching in the 3DFIS is
incorporated.

• A low-rank minimization procedure is applied to yield a denoised
patch from multi-view similar patches.

5.1. Depth-guided adaptive window selection

For a pixel (x, y) in the target view, a patch of surrounding pixels in
a square window is considered as the reference patch in the following
denoising procedure. Traditionally, this pixel is at the center of the
window. However, when the pixel is positioned near a discontinuity of
the disparity map, the appearances of patches in the corresponding
3DFIS stack column are often inconsistent and provide no good candi-
dates for denoising. This is illustrated in Fig. 7(a), in which A, B, C
represent regions with different disparity values. Positions of region A
varies because it has a different disparity value than those of B and C.
When the window is centered at the pixel (solid line), patches #1 and
#2 tend to make incorrect matches across the left, middle and right
views. However, if the top-left window (dashed line) is used, the cor-
responding patches are matched correctly. In this work, we consider
five different window definitions with index j=0 indicating pixel
being at the center of the window, while indices j=1 to 4 representing
pixel locations at each of the four corners of the window, as shown in
Fig. 8(a). These windows are called adaptive windows. The notion of
adaptive window has been discussed in literatures (Kang et al., 2001;
Nakamura et al., 1996; Tao et al., 2001) with selection criteria solely
based on intensity values. In this work, both intensity values and dis-
parity values are considered.

To see the difference of our approach, consider an example shown in
Fig. 7(b), in which the left view is supposed to be selected for pixel #2
(same as Fig. 7(a)). The dotted line refers to the top-right window. If

Fig. 5. Disparity maps using (a) fixed patch size (5× 5)+ all views; (b) variable patch size+ all views; (c) variable patch size+ 50% views; (d) variable patch
size+ view selection.

Fig. 6. Comparison of disparity estimation methods: (a) Taniai et al. (2016); (b) Lee et al. (2015); (c) Klaus et al. (2006); (d) Miyata et al. (2014); (e)
Zhou et al. (2015); (f) proposed.

Fig. 7. Illustration of adaptive windows: (a) centered window (solid line) and
top-left window (dashed line); (b) top-right window (dotted line).
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intensity is solely used for window selection, the right view could have
been selected as it has more similarity to the patch at the middle (re-
ference) view, and future denoising procedure tends to use the incorrect
views for denoising. Thus, we propose to use depth information to
eliminate such ambiguities. For this purpose, define the average dis-
parity value of each candidate window as

∑= ′ ′
′ ′ ∈

d x y
N

d x y( , ) 1 ( , )j
j x y W( , ) j (19)

where Wj (j=0, 1, 2, 3, 4) is one of the five windows that cover (x, y),
and Nj denotes the number of elements in Wj. The window selection is
based on two criteria C1 and C2:

C1. Define J={j | j=arg minj | d̅j(x, y)− d(x, y)|}. If there is only
one element in J, i.e. J={j1}, then select window j*= j1.
C2. If J consists of two or more elements in C1, the median root-
mean-square error (RMSE) between patches in each view and the
reference view is used to break the tie. The use of median instead of
mean is to reduce the impact of significantly biased outliers in the
RMSE values. Specifically, for window j, the median RMSE is de-
fined as

=δ x y δ x y( , ) median[ ( , )]j j k, (20)

where
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is the RMSE between patches in the kth view and the reference view. In
Eq. (21), Fd(x’, y’, k) is the kth view in the corresponding 3DFIS with
k=1 being the reference view. Select window j* such that j*= arg
minj δj(x, y).

An example of deploying these two criteria in adaptive window
selection is shown in Fig. 8, which visualizes the vectorized patches and
plots the RMSE values across all views. The corresponding d̅j(x, y) and
δj(x, y) are shown in Table 1. Using criterion C1, we have J={0, 1, 3}.
Using C2, the values of δj(x, y) for j=0, 1, 3 are compared and one has

j*=1, meaning the top-left window should be chosen. Note that the
window j=2 actually has the lowest δj value, but it is positioned on the
wrong object which has a different disparity than the reference pixel.

When performing adaptive window selection, we found that some
pixel locations may share the same adaptive window, resulting in many
repeated calculations. To save computing time, we introduce the book-
keeping method that records the center pixel location of each adaptive
window whenever it is processed. If the window for current pixel has
already been computed according to the record, the algorithm will
reuse the window and moves to the next pixel.

5.2. 3DFIS-based robust patch volume grouping

Once the patch window at the target view is selected, the algorithm
proceeds to search for similar patches over the 3DFIS to be used for
denoising. Previously, Zhang et al. (2009) proposed a disparity-guided
searching strategy that maps patches from the reference view to all
other views and computes the sum of squared differences of all mapped
patches as the similarity metric. This similarity metric is based on the
assumption that if two patches are similar in the target view, their
corresponding patches in all other views should also be similar. Al-
though it improves the patch matching by a significant level compared
to Euclidean norm, the searching process is time consuming and the
results are dependent on the accuracy of disparity map. In this work, we
also incorporate another assumption, that is, if two similar patches are
on the same depth plane, then their spatial relationship should also
remain across all views. This assumption is intuitive and easy to un-
derstand, since most objects in our multi-view scenarios are stationary
and rigid body. Combining these two assumptions, and with the help of
3DFIS, we developed novel similarity metric as well as a very efficient
way of patch matching that avoids exhaustive searching in the three-
dimensional space.

For each pixel (x, y), we have its disparity d and corresponding
3DFIS Fd. If the centered window (j=0) is selected in the previous
subsection, define a patch volume P0 as the column stack of patches in Fd

centered at (x, y) such that

= − + − +P x y F x r x r y r y r( , ) ( : , : , :),d
0 (22)

where r is the patch radius, i.e. half-length of patch's side. For other
adaptive windows, the location of the patch volume can be adjusted
accordingly which is trivial. In the 2D neighborhood of (x, y) in Fd, the
algorithm searches among other patch volumes, namely Pi (i=1, 2,
…), for the M best ones that have smallest distances with P0, defined as

= −P P
m

P PΦ( , ) 1 ,i
p

i0 0 1
(23)

Fig. 8. (a) sample pixel and five windows; (b)-(f) vectorized patches across all views and RMSE plots for j=0, 1, 2, 3, 4.

Table 1
Median disparity and mean RMSE for window selection in Fig. 8.

j 0 1 2 3 4
d̅j(x, y) 5 5 5.4 5 5.4
δj(x, y) 29.88 27.27 23.11 28.56 33.08
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where ||·||1 denotes the sum of absolute values as defined in Eq. (12),
and mp is the total number of elements in Pi (or P0). By incorporating
the two assumptions discussed above, Eq. (23) exhibits a more robust
behavior to noise while reducing the amount of computations by sim-
plifying exhaustive searching in 3D space to 2D searching. Fig. 9 shows
a comparison of different similarity metrics, with red box representing
reference patch and green boxes representing similar patches. We can
see that the proposed similarity metric has a performance closer to ideal
searching in clean image.

Using the procedures described above, we are able to identify a
number of patches similar to the reference patch. A few patches within
the patch volumes may still be inconsistent with the majority due to
proximity to disparity discontinuities. These patches, also called out-
liers, are removed using an outlier rejection criterion that involves
median absolute deviation (MAD). Conventional outlier rejection often
uses standard deviation around the mean as a threshold. However, this
method is unreliable as both mean and standard deviation are affected
by the outliers. In contrast, the absolute deviation around the median is
a more robust measure (Leys et al., 2013). For each pixel location,
denote p1 to be the reference patch in the target view, and pi (i>1) to
be other selected patches. The algorithm first computes the patch dif-
ference for each i as

= − = …φ p p i n, 1, ,i i 1 1 (24)

Let φ=[φ1, …, φi], then the median absolute deviation (MAD) is
defined as

= −φ φ φMAD( ) median[ median[ ] ]i (25)

Patches pi with φi>median(φ)+ 3·MAD(φ) will be designated as
an outlier and discarded. Here coefficient 3 in the threshold follows
conventions in outlier rejection (Leys et al., 2013).

5.3. Patch denoising using low rank minimization

Low rank (LR) minimization has been widely used in image pro-
cessing and has been shown to generate state-of-the-art denoising per-
formance (Gu et al., 2014; Cai et al., 2010; Ji et al., 2010; Hu et al.,
2015) that can compare with spatial domain or transform domain
methods like BM3D. Due to the image redundancy in many natural
images, similar patches discovered in the previous steps can be assumed
to form a low rank matrix. Therefore, a noise-free patch can be re-
covered using low rank minimization. Given the observed data Y, the
estimate of the latent data X, namely X̂, is the solution of

− +Y X λ Xarg min rank( )
X

F
2

(26)

where ||·||F denotes the Frobenius norm. Note that Eq. (26) is NP-hard,
but can be relaxed as a convex optimization problem as

− +Y X λ Xarg min *X
F
2

(27)

where ||·||* is the nuclear norm. This convex relaxation can be solved
using singular value decomposition (SVD) (Cai et al., 2010) as

 =X US Vλ
T (28)

where Y=USVT is the SVD of Y, and Sλ is the hard-thresholding result
of diagonal matrix S such that

= −S i i S i i λ( , ) max{ ( , ) , 0}λ (29)

The threshold λ in Eq. (29) plays an influential role in determining
the denoising performance. Too large threshold would result in over-
smoothing, while too small threshold tends to maintain a few noises in
the estimated image. Hu et al. (2015) determined the optimal value of λ
by minimizing the mean squared error of estimated values of vector
patches. In this work, we choose the same threshold for our LR mini-
mization, i.e. λ=1.5σ√Np, where σ is the standard deviation of noise
and Np is the number of similar patches.

For each pixel, similar patches p1, …, pn are grouped and the above
patch denoising procedure is performed, resulting in a group of de-
noised patches p’ 1, …, p’ n. The denoised patch p̂ is then computed as
the weighted average of p’ I, i=1, …, n,

 =
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The weight is computed as a non-increasing function
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where ρ is the filtering parameter controlling the decaying of the
weighting function.

Finally, we take an aggregation step to reconstruct the denoised
image from denoised patches. Each pixel is covered by multiple de-
noised patches, and to determine the value of the pixel in the denoised
image, we can take an average of all denoised patches that cover this
pixel. The summary of the proposed multi-view denoising algorithm is
shown in Algorithm 2.

6. Experiments and discussions

We used eleven datasets from different databases for performance
evaluation. Fig. 10 shows one image from each dataset. “Tsukuba” is a
5×5 dataset from Middlebury Multi-view Stereo Datasets, (2018).
“Knight” and “Tarot” are 17× 17 datasets from The (New)
Stanford Light Field Archive (2018), while “Bicycle”, “Dishes”, “Med-
ieval”, and “Sideboard” are 9×9 datasets from 4D Light Field
Benchmark from Universität Konstanz (4D Light Field
Benchmark, 2018), and we will use the 5×5 subset of them. Four
additional smaller image sets, namely “Barn”, “Cones”, “Teddy”, and
“Venus”, from Middlebury Multi-view Stereo Datasets (2018) are used
for specific comparison with the multi-view denoising algorithm pro-
posed in Luo et al. (2013). All datasets from The (New) Stanford Light
Field Archive (2018) and 4D Light Field Benchmark (2018) are resized
to 256×256, while “Tsukuba”, “Barn”, “Cones”, “Teddy”, and “Venus”
keep their sizes unchanged. For all datasets, white Gaussian noise with
noise levels σ= 20, 30, 40, 50 are added. We evaluate the denoising
performance using peak signal-to-noise ratio (PSNR) which is defined in
Eq. (2).

The hardware platform consists of an Intel® Core™ i7-4700MQ CPU

Fig. 9. Similar patch searching using different metrics: (a) block matching (clean); (b) block matching (noisy); (c) Zhang et al. (2009); (d) proposed. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(2.40 GHz) with a NVIDIA GForce® GT750M graphic card. The pro-
grams are implemented with MATLAB® R2014.

6.1. Parameter setting

Several parameters are tuned in experiments for best performance.
The same parameters are applied to all image datasets under the same
experiment conditions. In the disparity map estimation procedure, the
maximum and minimum patch sizes are set to Lmax= 15, Lmin= 5. This
is because patches smaller than 5× 5 contain insufficient number of
pixels to represent the photo-consistency while oversized patches tend
to smooth disparity boundaries. The upper and lower thresholds Σu and
Σl in Eq. (16) are defined as Σu=0.5σ+19, Σl=0.75σ+5, where σ is
the noise standard deviation. Such a choice is motivated by the fact that
texture strength for both flat and textured regions increases as noise
level rises, but at a different rate. The flat regions are more likely to be
influenced by the noise, hence we are setting a relatively faster change
rate for Σl. If the noise level is too high (e.g. σ>50), the default 50% of
the views and patch size Ldef = 5 will be used for all patches regardless
of textures, due to the fact that textures are severely corrupted by noise
in this situation.

In the denoising procedure, the maximum disparity range dmax is set
to 15, which is sufficiently large for most multi-view images in the
testing set. The patch size is fixed to 5, i.e. r=2 in Eq. (22). As de-
scribed in Section 5.3, the threshold λ in Eq. (29) is set to 1.5σ√Np

according to Hu et al. (2015). Another important parameter is the de-
caying parameter ρ in Eq. (31), which plays a similar role in the cor-
responding part of NLM algorithm. Large ρ tends to average all patches,
acting as an averaging operator, while small ρ puts more weights on
similar patches. The original NLM took value of 0.35σ or 0.4σ for this
parameter, with respect to different levels of noise. With experiments
on several datasets, we found that ρ=0.4σ achieves sufficiently sa-
tisfactory performance.

The number of similar patch volumes n and the radius (half size) of
searching window R are two flexible parameters that affect both de-
noising performance and computational time. In Table 2, the PSNR and
the run time comparisons using different values of n, R on the “Tsu-
kuba” dataset are reported. When R is very small, e.g. R≤ 3, there may
not be enough similar patches existing in the searching window, and

corresponding entries are labeled as N/A in the table. Note that run
time increases with both n or R, with R having more prominent impacts,
while PSNR exhibits a slower change rate. In these experiments, we
choose n=4, R=4 for all 5× 5 datasets considering the trade-off
between performance and complexity. When the number of views are
reduced, n and R should be increased accordingly to ensure that there
are sufficient number of similar patches. Therefore, for the four smaller
datasets that are used to compare with Luo et al. (2013), we set n=7,
R=10.

6.2. Comparison with single-image denoising

In the first experiment, we compared the proposed algorithm
against some state-of-the-art single-view denoising algorithms in-
cluding NLM (Buades et al., 2005), BM3D (Dabov et al., 2007), and
WNNM (Gu et al., 2014). These results are summarized in Table 3
where the best result (highest PSNR) in each row is highlighted in bold
face and the second best result is underlined. The results corresponding
to the proposed algorithm is listed in the last column in Table 3.

From Table 3, several observations can be made: 1) The proposed
method consistently outperforms single-view denoising algorithms by
2–4 dBs with the only exception when σ=50 for the “Tsukuba” da-
taset; 2) As noise variance σ increases, the PSNR decreases accordingly,
which is expected. However, the proposed algorithm remains its per-
formance edge in most cases.

A subjective visual comparison of above results is depicted in Fig. 11
for the case σ=20. In this figure, part of each image is enlarged for
ease of viewing. Note that the denoised images using the proposed al-
gorithm preserve more edges and textures in the original true image. In
contrast, single-image denoising methods tend to over-smoothen these
regions, possibly due to the lack of inter-view image redundancy in-
formation.

6.3. Comparison with multi-view denoising

Next, we compared our proposed algorithm against other multi-
view denoising algorithms, including Miyata's fast multi-view denoising
(Miyata et al., 2014), VBM4D (Maggioni et al., 2012), and our previous
work Zhou et al. (2017). VBM4D is a video filtering algorithm that

Fig. 10. Image datasets for experiment.

Table 2
PSNR and run time for different values of n and R on “Tsukuba”.

R=3 R=4 R=5 R=6 R=7 R=8

n=1 33.18 dB / 208 s 33.19 dB / 282 s 33.20 dB / 384 s 33.21 dB / 476 s 33.21 dB / 590 s 33.22 dB / 762 s
n=2 33.45 dB / 222 s 33.46 dB / 298 s 33.47 dB / 388 s 33.48 dB / 486 s 33.48 dB / 622 s 33.49 dB / 768 s
n=3 33.54 dB / 263 s 33.56 dB / 316 s 33.57 dB / 399 s 33.57 dB / 510 s 33.58 dB / 635 s 33.58 dB / 802 s
n=4 N/A / N/A 33.62 dB / 326 s 33.62 dB / 403 s 33.63 dB / 518 s 33.63 dB / 652 s 33.63 dB / 810 s
n=5 N/A / N/A 33.63 dB / 357 s 33.64 dB / 432 s 33.65 dB / 528 s 33.65 dB / 667 s 33.66 dB / 817 s
n=6 N/A / N/A 33.64 dB / 373 s 33.65 dB / 449 s 33.66 dB / 539 s 33.66 dB / 696 s 33.66 dB / 819 s
n=8 N/A / N/A 33.61 dB / 375 s 33.64 dB / 459 s 33.65 dB / 553 s 33.65 dB / 724 s 33.66 dB / 841 s
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exploits temporal and spatial redundancy in video sequence. In our
experiments, we fed in the multiple views as input video sequence.

The results are also summarized in Table 3. Again, the proposed
algorithm outperforms these multi-view denoising algorithms with
significant margin. Our previous work (Zhou et al., 2017) achieves the
second best results in most of these cases with a couple of exceptions.
Similar visual comparison in Fig. 11 also reveals the superior visual
quality of the denoised images using the proposed algorithms. In par-
ticular, existing multi-view denoising algorithms exhibit various kinds
of artifacts, mostly due to errors in the disparity map estimation. Near
object boundaries, visual quality is also degraded due to occlusion of
views or parallax. In comparison, the proposed algorithm is able to
reduce the impact of such problems to achieve better performance.

We also compared our proposed algorithm with a recent multi-view
adaptive NLM algorithm proposed by Luo et al. (2013). Since we have
no access to the code of Luo et al. (2013), we experimented on a dif-
ferent set of images (i.e. “Barn”, “Cones”, “Teddy”, “Venus”) that were
used in Luo et al. (2013) for the comparison. The results are listed in
Table 4, in which the proposed algorithm shows a slight advantage over
the adaptive NLM algorithm with the margin varying between 0.3 to
1 dB.

In Table 5, we have also demonstrated the PSNR improvement of
each contribution proposed in Sections 4 and 5 using the “Tsukuba”
dataset. Starting from our previous work (Zhou et al., 2017), the PSNR
increases 0.44 dB with the implementation of improved disparity map,
0.42 dB with the use of the robust similarity metric, and another
0.34 dB when the low rank minimization scheme is used. These im-
provements yields a total of 1.2 dB PSNR improvement over our pre-
vious work.

6.4. Impacts of accuracy of disparity map on denoising performance

The accuracy of the disparity map estimated from the noisy images
has significant impact on the denoising performance. If a disparity
value is estimated incorrectly, the denoising algorithm is prone to ex-
tract the wrong focus image stack and further denoising procedure is
likely to make errors when matching similar patches. To illustrate such
an impact, we applied the proposed denoising algorithm to “Tsukuba”
dataset using three different disparity maps: the ground truth, the
proposed disparity map estimated in Section 4, and the one im-
plemented by Miyata et al. (2014).

In Fig. 12, the three chosen disparity maps with their corresponding
denoised images are depicted. Two specific regions, indicated by red
and green boxes, are selected and enlarged for a closer inspection.
Focusing on the red box that covers a depth transition at the boundary
of the lamp, the proposed algorithm better captures the disparity values
than Miyata's method, and hence produces cleaner denoised image. On
the other hand, for the green box that covers the thin arm of the lamp,
disparity maps estimated from both the proposed and Miyata's methods
are not satisfactory, due to the similar intensity with the background.
As a result, part of the lamp arm is missing in both denoised images.
However, in general, the proposed disparity map yields a denoised re-
sult closer to that obtained using the ground truth, especially along the
disparity discontinuities, thanks to better handling of occlusion.

Meanwhile, the PSNR values of the denoised images, excluding the
dark borders surrounding the ground truth disparity map, are also listed
at the bottom of the figure. In these border regions, the ground truth
disparity values are unavailable. Excluding such regions allows a fair
comparison of the impacts of these three different disparity maps.
Quantitatively, as indicated in Fig. 12, the denoising performance using
the proposed disparity is slightly inferior to the one using ground truth,
but still better than that using Miyata's disparity map. The experiment
suggests that the denoising procedure does not require perfect disparity
map to achieve satisfactory denoising performance in most regions, and
slight bias in disparity map does not affect the visual appearance of
final results too much. Therefore, our proposed algorithm has certain
tolerance to bias accumulation from disparity estimation.

6.5. Impacts of number of views on denoising performance

Here we investigate the question: how does the number of views
affect the denoising performance? Zhang et al. (2009) mentioned that
the PSNR steadily improves as the number of views increases until
15–20, after which it flattens. We also conducted experiments using
camera arrays of different sizes ranging from 2×2 to 9×9. The PSNR
corresponding to different camera array sizes on four multi-view image
datasets, “Bicycle”, “Dishes”, “Knight”, and “Sideboard”, when σ=20
are displayed in Fig. 13. To focus on the impacts on the denoising
procedure exclusively, we use the same disparity map estimated using
5×5 array for denoising on all the experiments.

As shown in Fig. 13, the plots of PSNR versus array size curves for
the four datasets are very similar. The PSNR values increase initially as
more views are used and then start decreasing after reaching a max-
imum. Three of the curves reach the maximum for an array size of
5×5 and one reaches the maximum with a 7×7 array size. The initial
increase of PSNR values as number of views increases is easily under-
stood: more views imply that more candidate similar patches may be

Table 3
Denoising performance (PSNR) compared with other methods (best – bold;
second best – underlined).

σ=20

Image NLM BM3D WNNM Miyata
et al.

VBM4D Zhou
et al.

Proposed

Tsukuba 29.13 31.41 31.72 28.36 30.41 32.43 33.63
Bicycle 27.15 28.54 28.31 27.08 30.42 30.53 31.55
Dishes 28.61 29.79 30.44 28.22 30.97 32.59 33.66
Knight 28.16 29.87 30.61 28.62 31.54 32.35 33.57
Medieval 29.59 30.99 31.05 29.33 32.67 32.70 33.55
Sideboard 26.01 27.53 28.59 26.87 29.27 30.40 31.28
Tarot 25.11 26.38 26.91 25.53 28.07 29.73 30.73
σ=30

Image NLM BM3D WNNM Miyata
et al.

VBM4D Zhou
et al.

Proposed

Tsukuba 27.19 29.25 29.47 25.78 28.22 29.91 30.82
Bicycle 25.22 26.21 26.32 24.93 28.33 28.49 29.41
Dishes 26.40 27.51 28.19 25.86 28.42 30.01 31.20
Knight 25.93 27.55 28.09 26.20 29.25 29.85 30.97
Medieval 27.49 29.47 29.59 26.85 30.67 30.46 31.58
Sideboard 23.88 25.18 26.16 24.90 26.93 28.01 28.91
Tarot 23.07 23.82 24.30 23.36 25.64 27.51 28.39
σ=40

Image NLM BM3D WNNM Miyata
et al.

VBM4D Zhou
et al.

Proposed

Tsukuba 25.33 27.73 27.92 24.16 26.71 27.74 28.51
Bicycle 23.64 24.75 24.97 23.34 26.86 26.76 27.88
Dishes 24.59 25.53 26.59 24.08 26.65 27.97 29.34
Knight 24.09 25.74 26.39 24.41 27.58 27.71 29.11
Medieval 25.89 28.28 28.34 24.99 29.20 28.49 30.11
Sideboard 22.29 23.48 24.33 23.25 25.28 26.24 27.24
Tarot 21.40 21.95 22.68 21.87 23.85 25.50 26.58
σ=50

Image NLM BM3D WNNM Miyata
et al.

VBM4D Zhou
et al.

Proposed

Tsukuba 24.04 26.54 26.80 22.83 25.54 25.82 26.60
Bicycle 22.47 23.69 23.90 22.09 25.72 25.57 26.64
Dishes 23.26 24.57 25.43 22.70 25.36 26.20 26.24
Knight 22.83 24.45 25.01 22.89 26.31 25.83 27.47
Medieval 24.76 27.50 27.48 23.53 28.02 26.81 28.77
Sideboard 21.22 22.44 23.12 21.74 24.05 24.81 26.01
Tarot 20.20 20.80 21.47 20.64 22.50 23.88 25.14

S. Zhou et al. Computer Vision and Image Understanding 171 (2018) 34–47

43



selected and hence lead to an increasing PSNR. However, as the number
of views continue to increase, the reason that the PSNR values start to
flatten or decrease needs further investigation.

One of the plausible explanations is that as more views are included
in the multi-view system, the side views that are too far from the re-
ference view tend to have large translation such that there are less
overlapping regions between the distant views, i.e. less redundant

information across views, which is the key to multi-view denoising.
Moreover, more regions in one view could be occluded from another
view due to parallax. This large disparity with more occluded regions
might also have negatively affected the denoising quality. To confirm
our conjecture on the distant views, we conducted experiments on the
original dataset “Knight”, which has 17×17 views (i.e. s, t=1, 2, …,
17). In experiment 1, we selected 5×5 subset of the views that are

Fig. 11. Qualitative comparison of different denoising methods when σ=20.
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close to each other (s, t=7, 8, 9, 10, 11), with the reference view being
at s0= 9, t0= 9. In experiment 2, the reference view was kept un-
changed, and a same number of more distant views (s, t=5, 7, 9, 11,
13) were used. In experiment 3, views that are even farther apart (s,
t=1, 5, 9, 13, 17) were selected. The comparison of the three ex-
periments is shown in Table 6, which indicates that faraway views in-
deed tend to produce inferior denoising results than close views.

6.6. Computational cost

The complexity of the proposed denoising algorithm is O(NKnR2r2),
where N is the number of pixels in the images, K is the total number of
views, n is the number of similar patch volumes, and r, R are radius

(half size) of patch and searching window. The book-keeping strategy in
window selection reduced computational cost by a great amount by
avoiding a lot of repeated computations, including searching for similar
patches and performing SVD. Table 7 shows the run time of different

Table 4
Denoising performance (PSNR) compared with Luo et al. (2013).

Image BM3D Luo et al. Proposed

Barn 28.97 30.67 31.23
Cones 28.90 30.04 30.34
Teddy 30.18 31.11 32.13
Venus 30.51 32.00 32.66

Table 5
PSNR (dB) improvement of each contribution (step-by-step improvement
shown in parentheses).

Step Original method of
Zhou et al. (2017)

Improved
disparity
map

Robust
similarity
metric

Low rank
minimization
(proposed)

PSNR 32.43 32.87 (0.44) 33.29 (0.42) 33.63 (0.34)

Fig. 12. Denoising performance using different disparity maps. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 13. PSNR vs number of views on dataset (a) “Bicycle”; (b) “Dishes”; (c) “Knight”; (d) “Sideboard”.

Table 6
Denoising performance using close and distant views on “Knight”.

Experiment 1 (close) 2 3 (distant)
PSNR 33.67 dB 33.34 dB 32.23 dB

Table 7
Run time of different denoising methods on “Tsukuba”.

Algorithm WNNM Miyata et al. Zhou et al. Proposed

Run time 322 s 12 s 1725 s 326 s
PSNR 31.72 dB 28.36 dB 32.43 dB 33.63 dB

Algorithm 1
Disparity estimation.

Input: 3DFIS Fd, d=1, …, dmax

Output: Disparity map dest
1 for d=1: dmax

2 for each pixel location (x, y)
3 Compute σd(x, y) using Eq. (14);
4 end
5 Apply Gaussian filter to σd;
6 end
7 Estimate texture map Σ using Eq. (15);
8 Estimate patch size L and number of views V using Eqs. (16) and (17);
9 for d=1: dmax

10 for each pixel location (x, y)
11 Compute matching cost C*(x, y, d) using Eq. (12), with h= V(x, y), and

patch size= L(x, y);
12 end
13 end
14 Compute estimated disparity map dest using Eq. (13);

Algorithm 2
Multi-view image denoising.

Input: 3DFIS Fd, d=1, …, dmax, disparity map dest
Output: Denoised image for reference view Iest

1 for each pixel location (x, y)
2 Find its disparity value d(x, y) and corresponding 3DFIS Fd;
3 Compute average disparity and median RMSE using Eqs. (19) and (20) for

each candidate window (j=0, 1, 2, 3, 4);
4 Follow procedure C1, C2 to find the best adaptive window j*;
5 if the window has been recorded then
6 Skip to the next pixel location;
7 end
8 Search for similar patches p={p1, …, pn} using similarity metric in Eq. (23);
9 Exclude outliers from p;
10 Compute SVD of p=USVT;
11 Compute Sλ using Eq. (29);
12 Estimate the denoised patches p’={p’1, …, p’n} using Eq. (28);
13 Compute denoised patch using Eq. (30);
14 Record the window by book-keeping its center pixel location;
15 end
16 Aggregate denoised patches to get denoised image Iest;
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denoising algorithms that are written in MATLAB on the 5×5 “Tsu-
kuba” dataset on our machine. As can be observed, the proposed al-
gorithm achieves a computational time of 326 s. This is comparable
with the state-of-the-art single-image denoising algorithm WNNM
(Gu et al., 2014), while exhibiting relatively better denoising perfor-
mance. Although Miyata's algorithm (Miyata et al., 2014) is faster, the
corresponding denoising performance is much worse than the proposed
algorithm, due to the over-simplified procedures handling occlusions.
Compared to our previous approach Zhou et al. (2017), the proposed
algorithm reduces the run time by about 81% while yielding higher
PSNR. As discussed in Section 6.3, these performance enhancements are
primarily due to the innovations introduced in this work, namely, more
accurate disparity map estimation, robust similarity metric, and the
low-rank minimization denoising procedure.

7. Conclusion

In this paper, we proposed a multi-view image denoising algorithm

based on 3DFIS with improved disparity estimation and enhanced de-
noising performance. The 3DFIS contains important inter-view image
redundancy of the scene that is the key for robust disparity map esti-
mation under the noise. A multi-view low-rank based denoising algo-
rithm is empowered with robust 3DFIS-based similarity metric and
enhanced occlusion handling techniques using depth-guided adaptive
window selection. These improvements together demonstrated sig-
nificant denoising performance enhancement over existing approaches.
Future work will focus on a more integrated approach that can si-
multaneously aim at understanding 3D structure of the scene and
achieving denoising. Moreover, the theoretical impact of number of
views on the denoising performance will be thoroughly investigated.
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Appendix A. Proof of C*(x, y, d)≥ C(x, y, d)

In Eq. (12), if h= K, then
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Eq. (9), if written in terms of patch vectors vdk, can be expressed as
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The last inequality comes from the theorem that sum of absolute values is always greater than or equal to the absolute value of sum, i.e.
|x|+ |y|≥ |x+ y|, with equality holds when x≥ 0, y≥ 0. In our multi-view scenario, it means that the equality holds when each element of patch
vector vdk is greater than or equal to the corresponding element of vd1, which is possible only when d is the true disparity, i.e. vdk= vd1 for k=2, …, K.
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