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Abstract—We developed an ankle-worn gait monitoring
system for tracking gait parameters, including length, width,
and height. The system utilizes ankle bracelets equipped with
wide-angle infrared (IR) stereo cameras tasked with moni-
toring a marker on the opposing ankle. A computer vision
algorithm we have also developed processes the imaged
marker positions to estimate the length, width, and height
of the person’s gait. Through testing on multiple participants, the prototype of the proposed gait monitoring system
exhibited notable performance, achieving an average accuracy of 96.52%, 94.46%, and 95.29% for gait length, width,
and height measurements, respectively, despite distorted wide-angle images. The OptiGait system offers a cost-effective
and user-friendly alternative compared to existing gait parameter sensing systems, delivering comparable accuracy in
measuring gait length and width. Notably, the system demonstrates a novel capability in measuring gait height, a feature
not previously reported in the literature.

Index Terms— Computer vision, gait monitoring, stereo camera, wearable device.

I. INTRODUCTION

GAIT can be viewed as an automatic movement [1] that
requires an intact musculoskeletal function controlled by

multiple neural pathways and brain areas. The abnormality of
gait [2] is a common disorder that could cause severe injuries
and reduce an individual’s quality of life and ability to perform
activities of everyday living owing to a reduction in mobility
and an increased dependence on external care [3]. Researchers
are paying increasing attention to gait abnormalities since a
rising number of the population worldwide are facing them
due to aging or medical conditions, such as multiple sclerosis
[4], cerebral palsy [5], stroke [6], Parkinson’s disease (PD)
[7], and other age-related diseases. For example, it has been
reported that, by 2030, the number of people older than
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45 years with PD in the U.S. will increase to approximately
1 238 000 [8]. Therefore, the early detection of gait abnormal-
ities could benefit a large portion of the population.

The ability to measure and monitor important gait parame-
ters, such as gait length, width, and height [9], over different
phases of gait is an important clinical tool for diagnosing an
individual’s gait abnormalities. Gait parameters allow clini-
cians to assess the cause of the displayed gait abnormalities
and provide reliable metrics for intervention strategies for
long-term conditions. Clinicians typically use simple diagnos-
tic methods in a hospital setting to evaluate gait abnormalities
such as visual inspection, patient self-assessment surveys [10],
or simple descriptors such as using a specific walking distance
divided over the total walking time to obtain gait speed. These
approaches largely depend on the clinicians’ personal experi-
ence and knowledge. Subtle changes in gait parameters are
difficult and nearly impossible to detect since they are usually
not sensitive to human eyes. With the current advancement in
technology, it is now possible to enable a more accurate and
data-driven approach for monitoring gait parameters to assist
with expert analysis.

Current commercial technologies for gait monitoring in
clinical settings, such as inertial measurement units (IMUs),
pressure walkways or walkways with photoelectric cell bars,
and optical motion capture systems, suffer from many disad-
vantages [11], [12]. These systems are prohibitively expensive,
have substantial hardware complexity, and are often not user-
friendly. Commercial IMUs [13] range in cost from 600 USD
[14] to 3900 USD [15] and are only able to detect gait length.
Moreover, manual analysis of a large number of observed
IMU signals is needed since it is difficult to directly correlate
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the signals to a known gait characteristic [9], [16], [17].
Other problems include periodically repeated drift or change,
which introduces bias or offset in readings [13]. Similarly,
floor sensing products, such as gait pressure measurement
mats [18] or walkway systems with photoelectric cell bars
[19], priced at around 25 000 USD [20], are cumbersome and
limited in their spatial resolutions on gait length and width.
Besides, the analysis of gait is limited to a few steps in
a restricted space, resulting in missed gait patterns. Optical
motion capture systems require the use of multiple camera
systems, complex machine learning algorithms, and powerful
computational resources [9]. These kinds of optical systems
[21], [22], [23], [24] are usually limited to highly structured
research environments. It requires manual intervention to fix
mismatched feature points to accurately describe the human
skeleton [25] and requires participants to walk perpendicu-
larly at a fixed depth relative to the camera [12]. It is also
challenging to apply such systems because of the insuffi-
cient estimation of subtle gait movement [26]. As a result,
it is difficult to measure gait width and height using these
methods.

In general, existing works cannot simultaneously measure:
1) temporal-spatial properties of the gait, such as gait length,
width, height, and time; 2) gait events, such as initial contact
with the floor or toe-off; and 3) and the gait cycle, including
the standing and swing time. They do not meet the need for
clinical assessments of gait abnormality, which require a sim-
ple and low-cost process to provide quantitative information
on the patient’s status.

We propose a new method for the measurement of gait
length, width, and height that allows practitioners to supple-
ment the existing measurement setups in a convenient manner,
and demonstrate a prototype. As shown in Fig. 1, our system
uses ankle-worn stereo cameras for infrared (IR) imaging
and on-body computer vision processing of the captured IR
images to calculate the gait parameters. Combined with the
ArUco markers [27] (an open-source library for camera pose
estimation) and image undistortion algorithm, the large field-
of-view (FoV) cameras are capable of catching the ArUco
markers in a wide scene and enabling the measurement of
gait height even while the person is walking up a flight of
stairs. Using undistorted IR images keeps the high accuracy
while significantly reducing the amount of captured visual
information, allowing for the preservation of privacy. The
novel device we propose is low-cost (less than 200 USD),
efficient during measurement, easy to use, suitable for real-
time measurement, and enables an on-body computer vision
process, all while providing competitive accuracy compared
with state-of-the-art technology.

This article is organized as follows. Section II describes
the hardware and camera calibration settings. Section III
illustrates the algorithm in detail. The experiments and results
are demonstrated in Section IV. Finally, the discussion and
conclusion are presented in Sections V and VI, respectively.

II. SYSTEM OVERVIEW

Fig. 2 shows a schematic of the overall device operation,
including stereo camera calibration, gait event detection, IR

Fig. 1. (a) Image of the ankle-worn device with all the components.
(b) Schematic of the device, showing the positions of the Raspberry Pis,
large FoV IR cameras with IR filters, ArUco markers, and force-sensitive
resistors.

Fig. 2. Flowchart showing the overall operation of the gait monitoring
system.

image taking and processing, gait parameters calculations, and
wireless data transmission. The hardware design utilizes this
schematic as guidance.

A. Design
There are two wearables in the system, one for each ankle.

Each 3-D-printed wearable is outfitted with a pair of Raspberry
Pi Zero 2 W, large-FoV IR cameras, 780 nm IR filters, and
1200 mAh PiSugar3 portable batteries to form the stereo
camera system. The 120◦ FoV cameras are triggered by
two polymer force sensing resistors (FSR 402 from Interlink
Electronics) placed at the first metatarsal and the heel [28].
During the toe-off and heel-strike phases, the cameras take
images of the ArUco marker on the other wearable. The
780 nm IR filter limits the camera’s wavelength response to
the near-IR range. While the IR cameras limit background
visual information, they provide sufficient resolution alongside
the high contrast of the ArUco markers, affording an element
of privacy during the data capture. As demonstrated later
in Section III, the use of the IR cameras along with the
ArUco markers greatly reduces the computational complexity
of object detection, as the marker segmentation is significantly
simplified.

The PCB design focuses on capturing gait events and the
communication between Raspberry Pis. The force sensing
circuit uses the same concept as a low-pass filter circuit, where
the FSR is the resistive element and a 100 nF multilayer
ceramic capacitor is the output load. The time count for the
capacitor to reach the high state indicates the approximate
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magnitude of the FSR impedance, which suggests the force
level applied to the FSR. The preset hardware interrupt trig-
gers IR imaging and records the time stamp when the time
count is less than the predefined threshold, implying that a
gait event has occurred. The system transmits the core data
instead of raw images for higher power efficiency. The univer-
sal asynchronous receiver-transmitter (UART) communication
protocol is used for the wired transfer of the extracted markers’
pixel positions between the Pi pair on the same wearable. The
system utilizes the user datagram protocol (UDP) to wirelessly
collect the computed gait length, width, and height from the
two wearables and save them to the server.

The portable batteries can run the devices for 4–5 h. The
3-D printed model can be adjusted to wrap around the ankle
with Velcro tapes and cushions to fit most people comfortably.
The dimensions of the whole device are 62 × 156 × 81 mm.
The entire device weighs 215.45 g.

B. Camera Calibration
In this work, 120◦-FoV (Horizontal: 95◦; Vertical: 75◦)

cameras were utilized which replaced the 72◦-FoV Pi cameras
used in our previous report [29]. The larger FoV enables
more space than the prior one for capturing the marker while
walking. The camera is rotated by 90◦ to have an extensive
vertical FoV to obtain gait height even while the person is
walking upstairs. Meanwhile, the smaller dimension of the
7.9 × 7.9 mm camera improves the measurement accuracy
because the extra physical gap between the two cameras
benefits the stereo camera algorithms.

Fig. 3 shows the stereo camera calibration setting and one
of the calibration reconstruction results. The stereo camera, sit-
ting on the center line, captures a series of unique checkboard
image pairs. The checkboard is set at different positions and tilt
angles. The calibration process extracts the camera’s intrinsic
and extrinsic matrix through the image pairs. The intrinsic
matrix is related to the internal characteristics of the camera,
including focal length, principal points, distortion coefficients,
etc. The extrinsic matrix represents the positional relationship
between the two cameras using the rotation and translation
matrices. The camera matrices are applied to rectify the stereo
images, especially the distorted ones. The system only needs
a one-time calibration procedure as long as the cameras’
relative position does not change. No manual interventions are
required since there are no periodic sensing drifts. The camera
calibration utilizes the MATLAB Computer Vision Toolbox
because of its straightforward GUI.

Camera calibration is crucial for the accuracy of the gait
parameter measurement. The reprojection error is used to indi-
cate the calibration performance, which is the pixel distance
between a pattern keypoint detected in a calibration image and
the corresponding world point projected into the same image
using the camera parameters. Ideally, the reprojection error
should be smaller than 1 pixel. To reduce the reprojection
error, the calibration pattern should be at a distance that is
roughly equal to the actual distance between the camera and
the object of interest. Additionally, the intercept angle between
the camera plane and the pattern plane should be less than 45◦.
During the calibration, we used 20 image pairs for calibration

Fig. 3. (a) Camera calibration setting. (b) Calibration reconstruction,
showing the stereo camera and pattern with various poses.

and one image pair for a quick performance assessment. For
the following experiments, the calibration pattern was set
at three locations, 30/45/65 cm, respectively, with various
poses as shown in Fig. 3. The reprojection error is around
0.45 pixels.

III. ALGORITHM

This section discusses the operation of the algorithm behind
the gait monitoring system. The calibration process determines
camera parameters, including the distortion coefficients, and
then rectifies the captured IR images. The images first go
through image processing for better feature extraction to obtain
the markers’ pixel positions. After that, the pixel positions
from both cameras in the stereo camera system are combined
with the cameras’ matrix to calculate the three-axis positions
of the markers and the corresponding gait parameters. The
pseudocode is shown at the end of this section.

A. Distortion Coefficients
As shown in Fig. 4(a) and (b), the larger FoV camera

obtains more content compared with the regular Raspberry
Pi camera because of the wide-angle lens. However, the
corresponding image has stronger geometric distortions, which
increase closer to the edges of the image. The straight lines
on the edge are curved inward owing to the barrel distortion.
This is because the FoV of the lens is wider than the size
of the CMOS sensors, and the scenes are “shrunk” to fit the
canvas. The distortion effect on images may increase the error
in measuring the gait parameters.

Considering the device is used for wearable purposes with
limited computational resources, traditional solutions to the
distortion, such as using additional compensating optical ele-
ments or adding extra computation processes to rectify each
image, would drastically increase the complexity, weight, and
cost of the system. To counter these, the distortion correction
is handled during the camera calibration. The one-time calibra-
tion includes the calculation of the distortion coefficients. The
camera parameters with these coefficients relieve the distortion
problem during the estimation of the gait parameters.

The main contributor to the distortion seen in modern
cameras is radial distortion, with some caused by tangential
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Fig. 4. Image vision comparison (without IR filter) between
(a) 72◦-FoV camera, (b) 120◦-FoV camera, (c) rectified image using
only radial distortion coefficients, and (d) rectified image using all three
distortion coefficients.

distortion and skewness. Radial distortion is common in low-
cost, wide-angle lenses when the light rays bend more on the
edge of the lens than the optical center. Tangential distortion
happens when the camera lens is not perfectly aligned parallel
to the CMOS sensor and causes the image to look tilted.
Meanwhile, skewness occurs when the axis of images is not
perpendicular and makes square content in a pixel appear like
a parallelogram.

There are many models to describe radial distortion,
for example, the even-order polynomial model [30] or
Fitzgibbon’s division model [31]. The calibration applies the
commonly used polynomial model to represent the radial
distortion because it performs well on 120◦-FoV distortion
cases. The radial distortion has the following form:

x ′
= x

1 + k1r2
+ k2r4

+ k3r6

1 + k4r2 + k5r4 + k6r6

y′
= y

1 + k1r2
+ k2r4

+ k3r6

1 + k4r2 + k5r4 + k6r6 (3.1)

where, the x , y are the undistorted pixel locations, the x ′, y′

are the distorted pixel locations, kn are the radial distortion
coefficients of the lens, and r is the Euclidean distance of
the distorted point to the distortion center. In the polynomial
model, the kn values should be positive because the images
represent a barrel distortion. The higher-order coefficients are
not considered since six coefficients are sufficient to describe
radial distortion. The radial distortion coefficient kn can be
estimated from the parameters of circular arcs identified in
image sets during camera calibration [32].

The tangential distortion has a form as shown below [33]

x ′
= x + [2p1xy + p2(r2

+ 2x2)]

y′
= y + [p1(r2

+ 2y2) + 2p2xy] (3.2)

where pn are the tangential distortion coefficients of the lens,
the x , y are the undistorted pixel locations, the x ′, y′ are the
distorted pixel locations, and r2

= x2
+ y2.

Fig. 5. (a) Processed image after cross-correlation between the pixel’s
neighbor area and the Gaussian kernel. (b) Original IR camera image
displays the extracted ArUco marker location and ID.

In addition, the skewness of the image is non-zero if the
image axes are not perpendicular [34]. Using basic linear
equations or changing the basis, the effects of skewness have
the following format:

x ′
= fx x + x0 = fx x − fx cot θy + x ′

0

y′
= fy x + y0 =

fy

sin θ
y + y′

0 (3.3)

where fx = F ∗ sx and fy = F ∗ sy , F is the focal length,
sx and sy are expressed in pixel×m−1, θ is the angle between
the two axes, x ′

0 and y′

0 are the offset of the image center from
the origin. The definitions of x , y, x ′, and y′ are the same as
above.

An image distortion effect combines the equations from the
above three parts. Fig. 4(c) shows an undistorted image recti-
fied from Fig. 4(b) using only the radial distortion coefficient.
Fig. 4(d) displays the image using all three distortion coeffi-
cients. Compared with Fig. 4(c) and (d) shows no significant
changes. Because of the improved precision and optimized
optical design in solid-state manufacturing, the tangential
coefficients and skewness in modern cameras are negligible
[35], [36]. Therefore, we apply approximate computing by
using only the radial distortion coefficient rather than all three
coefficients to reduce the computation load while achieving
similar accuracy.

B. Image Processing
As shown in Fig. 5(b), the IR filter limits the background

visual information but also makes it harder to distinguish the
ArUco markers. Image processing is thus first performed on
the captured IR camera images to obtain the corresponding
grayscale images and then the binary images for segmentation.
The feature extraction method recognizes the ArUco markers
and their pixel positions with less computation because of the
binary image.

Fig. 5(b) containing the markers was converted to binary
images by applying a threshold. Common methods for thresh-
olding, such as the simple constant threshold, cannot handle
complex environments during walking, including various light
conditions or complicated dynamic background information.
Here, our system applies adaptive thresholding to generate
multiple thresholds. The threshold can be either a pixel’s
neighbor area average or a weighted sum of a Kernel-
Size × KernelSize neighbor area of a pixel minus an offset,
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where the weighted sum is a cross correlation between the
neighbor area and the same size Gaussian window.

The 3.3 × 3.3 cm markers with high specificity were chosen
from the default ArUco dictionary for feature extraction to
obtain the marker pixel positions. The marker has a 5 × 5 grid
for quick detection of the pattern and 25 bits for storing
the information. The printed pattern uses a simple graphic
with a large dimension, and contains data “5.” This helps the
system accelerate the detection and error correction process.
In general, the marker detection process consists of contour
catching, shape filtering, perspective transforming, black/white
areas separating, bits determining, and comparison with the
dictionary. The above detections return the locations of the
four corners of the marker and its contents if there is a match
in the dictionary. We denote the middle points of the four
corners as the location of the marker.

Fig. 5(a) displays the processed image with Gaussian Ker-
nel, and Fig. 5(b) shows the originally captured IR image
displaying the middle point of the detected ArUco marker.

C. Stereo Cameras Algorithm
The ArUco marker pixel positions from both images (from

both cameras) were combined to compute the three-axis
marker positions and corresponding gait parameters through
the stereo camera algorithm.

A binocular stereo camera can be used to estimate the depth
of the 3-D structure, where one camera is chosen to be a
reference camera. The mapping from the world coordinate
3-D points to 2-D points in an image is described by the
camera projection matrix P

x = PX = K [R|t] X (3.4)

where X ∈ R4 and x ∈ R3 are the reference camera
homogenous coordinates of the 3-D points and its 2-D image
points. The camera projection matrix P can be decomposed
into a camera intrinsic matrix K ∈ R3×3 and a camera
extrinsic matrix [R|t] ∈ R3×4.

The camera intrinsic matrix K has the form

K =

 fx − fx cot θ x0
0 fy y0
0 0 1

 (3.5)

where fx and fy are the focal lengths in pixel units along the
x- and y-directions respectively, x0 and y0 are the principal
point offsets. The camera extrinsic matrix describes the pose
relations between two cameras, where R ∈ R3×3 is the camera
rotation matrix and t ∈ R3×1 is the camera translation matrix.
As shown in Section III-A, when the skewness in the modern
camera is negligible, the axis is perpendicular and cot θ is
then 0.

Since one camera in the binocular stereo system is chosen
as a reference, its projection matrix is P1 = K1[I |0], where
I is the identity matrix and 0 is the zero vector. The intrinsic
camera matrix K1 and the projection matrix for the second
camera P2 = K2[R2|t2] can be found in the calibration
procedure [37].

A point in the world coordinate is transformed into the
camera coordinate using the extrinsic matrix. The camera

Fig. 6. (a) Top view: computation of gait length and width from
marker positions. (b) Side view: computation of gait height from marker
positions.

coordinates are mapped into the image plane using the intrinsic
matrix. On the other hand, the 3-D coordinates of any point
in the scene can be found given the relative camera poses and
their image projections onto both cameras. If x1 = (x1, y1, 1)T

and x2 = (x2, y2, 1)T are the image projections of the
same 3-D scene point X = (xw, yw, zw, 1)T , then X can be
reconstructed given P1, P2, x1, and x2.

From the camera projection equations, we know that x1 =

P1X and x2 = P2X. This system of linear equations is
equivalent to solving AX = 0 by taking the cross product
xi × (Pi X) = 0, i = 1, 2 to eliminate the homogeneous scale
factor with

A =


x1 P3T

1 − P1T
1

y1 P3T
1 − P2T

1
x2 P3T

2 − P1T
2

y2 P3T
2 − P2T

2

 ∈ R4×4 (3.6)

where P iT
j are the i th row of Pj , i = 1, 2, 3, j = 1, 2.

The least-squares solution of AX = 0 subject to ∥X∥ = 1,
is the last column of V , where A = U

∑
V T is the singular

value decomposition of A [35].

D. Calculation of Gait Parameters
As shown in Fig. 6, the gait length and width are the

vertical and horizontal distances between the camera on one
foot and the marker on the opposite foot along the walking
direction (−y direction); the gait height is the maximum
vertical distance traveled by the foot during a leg swing.

The 3-D position values (solution to AX = 0 in
Section III-C) are under the reference camera coordinate.
However, natural gait length, width, and height should be
intuitively in a world coordinate system, specifically, the
ground coordinate. Considering that the wearables are nearly
parallel to the ground, calculating the gait length and width
from the 3-D positions output of the stereo camera algorithm
can be viewed as a coordinate transformation problem. There-
fore, a point v′ in the reference camera coordinate (xcam ycam
coordinate) can be transferred to the world coordinate (xy
coordinate) through the transformation matrix Q, as shown
below

v′
= Q · v =

[
cos θ − sin θ

sin θ cos θ

]
· v (3.7)

where v is a matrix that includes gait length and width and
angle θ is the line of sight intercepted with the walking
direction, which can be measured at device installment.
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Fig. 7. Pseudocode for device operation.

Gait height is the relative height difference between two
wearables while walking, the same height difference as mark-
ers travel. The initial difference in height between the two
wearables when both legs are at the foot-flat periods is mea-
sured in advance. The subsequential gait height computation
utilizes the calculated height values and subtracts the initial
height difference.

E. Pseudocode
The Pseudocode shown in Fig. 7 briefly demonstrates the

overall deployment of the above gait monitoring devices. The
Pseudocode has three major parts: 1) gait event detections;
2) image processing and marker detections; and 3) position
calculations. Note that this Pseudocode is applicable to the
wearable that connects to the FSR on the gait heel. Small
changes are made for the device that connects to the FSR at
the top of the sole in the hardware interrupt design and marker
pixel position transfer through UART. The hardware interrupt
triggers the cameras on the heel to take images simultaneously.

Camera calibration, calibration accuracy evaluation, and
corresponding hardware adjustment are done separately. Fur-
thermore, many other peripheral codes were used depending
on the application, for example, adjustment of camera param-
eters such as ISO, shutter speed, and exposure gain; failure
detection/error correction; power-saving sleep mode with auto
wake/running script, etc.

IV. EXPERIMENT AND RESULT

In this section, two experiments are described to test the
performance of the gait monitoring system. The accuracy and
precision of the gait length, width, and height are counted for
the main metrics of the performance. We also compare the
device’s performance with state-of-the-art technologies.

A. Methodology
Three coauthors (healthy, aged 28–35) volunteered to test

the gait monitoring system to verify its sensing ability and

Fig. 8. Experiment setup. A participant walks (a) through the printed
grid to measure the gait length and width and (b) up the stairs to estimate
the gait height.

repeatability. The experiments were conducted at different
times over two months. The physical stability of the device
was quite crucial for the two experiments, especially during
walking. A piece of towel was used as a cushion to keep the
device tight on the ankle while also providing comfort for the
participants during experiments.

The first experiment, shown in Fig. 8(a), assessed the ability
of the devices to monitor the gait length and width. We
designed a 5-m long, 1-m wide printed grid with a 5 mm
resolution to record the ground truth for the gait length
and width. Side cameras and tape markers were utilized to
mark the gait pattern to achieve better ground truth accuracy.
Three participants walked five times on the grid. The range
of gait length for the participants varied between 11.5 and
48.5 cm, and the range of gait width for these participants
was 10.5 to 22.5 cm. The number of steps for each round
varied from 4 to 8, depending on the person. A total of 75 m
was recorded.

The second experiment explored the feasibility of the mon-
itoring system to measure gait height. The three participants
lifted their feet to five predetermined heights (3, 6, 10, 15,
and 21 cm) and one natural gait height. We also tested the
devices’ performance on stairs, which could be a valuable
feature for future disease classification. The stair height was
around 18 cm. The gait height experiment was repeated five
times on each participant.

B. Accuracy and Absolute Error
Fig. 9(a)–(c) demonstrates the gait length, width, and

height measurement results, respectively. Each figure has three
objects representing the data from the three participants.
The first columns of Fig. 9 are the gait parameters’ average
accuracy with their standard deviation (SD). The second
column depicts the average absolute error with the SD of
gait parameters. For gait length and width, each round of the
experiment was divided into left to right and right to left to
better classify the data.

The average accuracy for the gait length, width, and height
was found to be 96.52%, 94.46%, and 95.29%, respectively.
The definition of average accuracy is absolute errors divided
by the ground truth values. The average absolute errors for the
above three parameters were 1.0, 0.9, and 0.6 cm, respectively.
The errors were converted to absolute values because part of
the measured data was positive while others were negative.
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Fig. 9. Results for (a) gait length, (b) gait width, and (c) gait height. Columns from left to right 1) gait length/width/height average accuracy/SD,
2) gait length/width/height absolute error average/SD, and 3) box chart of gait length/width/height data points over three persons.

From the above figures, person 2 has a significant absolute
error and a relatively large SD on the gait length compared
with the other two persons. A possible reason is that person 2
has a large step length and narrow step width, which caused
the markers to appear on the edges of the images, increasing
the error. Furthermore, a considerable step length means fewer
step data points, making the SD relatively large. Another
observation is that the gait width accuracy is less than the
length because, with a similar absolute error, the ground truth
of width is smaller than the length, amplifying its impact.

C. Precision
The last column of Fig. 9 shows a box chart of the data

points for the gait length, width, and height of three persons in
the two experiments. Five horizontal lines from bottom to top
of the box represent the 5th, 25th, median point, 75th, and 95th
percentiles of data. The white dot inside the box is the average
value point. The box size indicates the interquartile range,
which illustrates the statistical dispersion of the dataset. In the

meantime, the sharpness of the convex curve also intuitively
pictures the variance of the data. From the figures, the gait
monitoring system has high precision since most of the data
are clustered.

As reasoned above, the gait length data from person 2 was
relatively scattered, which lowers the precision compared with
the other two persons. We also see that 90% of the gait height
data points are within the ±1 cm error range. However, several
data points from the 21-cm gait-height test are far from the box
range. This is understandable since a 21-cm gait height does
not reflect a natural walk and exceeds the normal calibration
range of the camera system. Furthermore, a larger distance
also causes an increase in the error due to difficulty in marker
capture.

D. Performance Comparison
We did a survey on the gait monitoring technologies devel-

oped in the past five years. None can simultaneously measure
the gait length, width, and height, especially the height.

Authorized licensed use limited to: University of Wisconsin. Downloaded on October 18,2024 at 00:19:04 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: OptiGait: GAIT MONITORING USING AN ANKLE-WORN STEREO CAMERA SYSTEM 6895

TABLE I
ACCURACY PERFORMANCE COMPARISON

Some only measure the gait length. As shown in Table I, the
performance of our ankle-wore stereo camera system on gait
length and width exceeds or is on par with these competing
technologies, with a relatively low cost. In the meantime,
our system provides the gait height measurement with high
accuracy.

V. DISCUSSIONS

There are some possible explanations for the deviations in
the calculated results from the ground truth data. First, the
stereo camera algorithms rely on the assumption of the pinhole
model. However, large lenses in low-cost cameras disobey the
assumption, specifically at the edge of images. This can be
corrected by extra compensations in the algorithm. Second, the
low-resolution images used in stereo camera systems provide
fewer pixels, resulting in uncertainty errors in feature point
correspondence between markers on the two images. This can
be fixed by designing markers better suited for gait monitoring
instead of the standard ArUco marker. Last, fitting the device
to the ankle might lead the stereo cameras and markers to
deviate from the original positions, introducing errors. This
can be improved by the careful and iterative design of a new
type of model with a more stable and ergonomic shape.

Future work involves solving the above problems. Further-
more, more gait parameters, such as gait speed, acceleration,
standing time, swing time, cadence, foot pose angle, step
frequency, step time, etc., can be measured using the time
stamp recorded from gait event detection and better-designed
markers. A model-based object detection method will be
developed to detect the self-designed marker. We will recruit
more participants from different races, genders, ages, health
statuses, etc., to establish a standard balanced gait parameters
database based on our iterative monitoring system. With more
gait features and data points involved, it is possible to classify
and predict gait diseases through machine learning.

VI. CONCLUSION

A new type of ankle-worn gait monitoring system based
on computer vision has been developed for monitoring the
gait. A wide-angle IR stereo camera is mounted for tracking
gait parameters. The system has demonstrated high accuracy
and precision in gait length, width, and height measurements.
The measurement accuracy is 96.52%, 94.46%, and 95.29%
for gait length, width, and height, respectively. The average
absolute errors for the above three parameters are 1.0, 0.9, and
0.6 cm, respectively. The proposed gait monitoring system is

low-cost, easy to use, and suitable for real-life measurement,
all while delivering comparable sensing performance.
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