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A B S T R A C T

A novel online real-time video stabilization algorithm (LSstab) that suppresses unwanted motion jitters based
on cinematography principles is presented. LSstab features a parallel realization of the a-contrario RANSAC
(AC-RANSAC) algorithm to estimate the inter-frame camera motion parameters. A novel least squares based
smoothing cost function is then proposed to mitigate undesirable camera jitters according to cinematography
principles. A recursive least square solver is derived to minimize the smoothing cost function with a linear
computation complexity. LSstab is evaluated using a suite of publicly available videos against state-of-the-art
video stabilization methods. Results show that LSstab achieves comparable or better performance, which attains
real-time processing speed when a GPU is used.
1. Introduction

With the rapid growth of digital camera technologies, the amount
of video footage created by daily users has increased tremendously.
A majority of these videos are created by amateurs using hand-held
cell phone cameras. Hence, many video clips suffer motion jitters due
to unwanted handshaking. The visual quality of these videos can be
significantly enhanced with video stabilization.

A video stabilization algorithm can be helpful in many applications,
such as visual tracking [1,2], video surveillance [3], and wearable cam-
eras [4]. If the video stabilization algorithm is online and in real-time, it
is also beneficial to minimally invasive surgery [5–7], unmanned aerial
vehicles [8,9], etc.

Video stabilization is to reduce annoying jitter in the captured
video due to unwanted or uncontrolled camera shake during video
capturing [10–12]. Hardware video stabilizers have been developed to
mitigate the physical shaking of the camera [11,13] while shooting
the video. Video stabilization algorithms [10,11,13–17] may also be
applied to post-process a captured video to produce a stabilized video
that exhibits smoother global camera motion. Both the hardware and
software solutions can be combined to ensure desired video quality.

Algorithmically the process of video stabilization consists of the
following steps: (a) Estimate global camera motion trajectory in a given
video clip; (b) Choose a targeted (usually smoothed) camera motion
trajectory; (c) Modify individual video frames according to the targeted
camera motion trajectory; (d) apply additional post-processing steps
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to mitigate potential motion blurs due to (original) camera jitters and
irregular frame boundaries due to geometrical transformation applied
to realize the desired camera motion trajectory.

Depending on the context of the video, the global camera motion
may not be easily defined. If the video consists of a rapidly moving
foreground object, one may want to track the foreground object to
maintain its position at the center of the video frame. The camera
trajectory should be estimated from the tracked foreground object in
this case. On the other hand, for surveillance purposes, the desired
camera motion may be stationary or smooth panning of the camera.
In this case, the background may be used to determine the camera’s
global motion trajectory. Thus, an ideal video stabilization algorithm
must allow human input to estimate the global camera motion and
appropriately determine the targeted global camera motion trajectory.
Currently, almost all video stabilization algorithms directly use static
background objects to estimate the desired camera’s global motion.
[8–11,13–15,17] compute optical flow and feature points and then
use RANSAC [18] to find a subset of feature points belonging to the
background. Liu et al. [11,17] use Structure-from-Motion (SfM) to
reconstruct the 3D camera trajectory and a sparse 3D point cloud,
where RANSAC is used to select a subset of background feature points
to derive the camera motions.

The targeted global motion trajectory is also affected by the length
of the video clips. Video processing may be applied in a batch mode,
where the entire video is to be processed at once, or in an online real-
time mode, where the stabilization may be applied incrementally for
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Fig. 1. Overall flowchart of the proposed algorithm, where 𝑁 is specified by users.

each additional short video clip which may be a single frame. The
targeted motion trajectory can be regarded as a smoothed trajectory
of the original trajectory. How ‘‘smooth’’ the targeted trajectory is
relative to the original motion trajectory is yet another hyper-parameter
that may need to be fine-tuned based on the outcome of a chosen
view quality metric. Grundmann et al. [13] and Liu et al. [11] state
that a desirable stable camera path should follow the cinematography
principles. In other words, the desired motion path should be composed
of constant, linear, and parabolic segments as if the video is taken with
professional stabilization tools.

Motion smoothing is particularly challenging in the online real-
time mode if the unseen future motion trajectory cannot be reliably
predicted based on prior knowledge about the global camera motion.
Successful video stabilization algorithms [10,11,13–17] first compute
the entire motion trajectory either in 2D or 3D then smooth it at
once. Several real-time approaches [14,19] adapt Kalman filters for
smoothing, but their performance is limited.

Given the current and desired global motion trajectories, a 2D or
3D geometrical transformation will be applied to each video frame to
obtain the final stabilized frame. During this process, the quality of
the output video frame may be impacted, and additional mitigating
measures may be applied. These may include the correction of motion
blurs due to rapid camera jitters and undefined frame boundaries due
to the geometrical transformation of the frame images. Several post-
processing techniques such as cropping [11,13,16] mosaicing [20],
and inpainting [10] are proposed to mitigate this issue, which can
be considered as a supplement to the standard video stabilization
procedure.

This paper proposes an online real-time geometry transformation-
based algorithm for video stabilization. Unlike other geometry
transformation-based algorithms, we adapt and parallelize a new tech-
nique called a-contrario RANSAC (AC-RANSAC), which does not re-
uire any hard thresholds for inlier/outlier discrimination appearing
n RANSAC. Hence, it can compute inter-frame global motions more
obustly.

The proposed algorithm starts by estimating the inter-frame global
otion between two consecutive frames except for the first one. First,
2

features points for the current frame are extracted and matched over
the previous frame. We choose SURF [21] and FLANN [22] as our
feature extraction and matching algorithm because of their delicate
balance of robustness and efficiency [23,24]. Then, the parallel AC-
RANSAC is used to estimate the inter-frame geometry transformation,
from which the motion parameters (translations, rotations, and scales)
are derived. The inter-frame global motion estimation is performed for
each incoming frame.

Then the algorithm enters the motion smoothing phase, which
requires a user-specified parameter 𝑁 . If the current frame number
is less than 𝑁 , the camera motion for the current frame will be
smoothed by our cinematography principles guided modified recursive
least squares algorithm (C-MRLS). After the 𝑁th frame, we stabilize
the current camera motion with our modified sliding window least
squares algorithm (MSWLS). Finally, the current frame is warped to
the previous stable space in the motion compensation stage to create
a stabilized video sequence. The whole algorithm pipeline is shown in
Fig. 1

The key contribution of the proposed algorithm is a novel least-
squares-based smoothing cost for estimating the intentional motion and
its associating solver that minimizes the cost in linear time, which is
described in Section 4. Section 2 describes the Related Work, and par-
allel AC-RANSAC is detailed in 3. Experiment validation is described in
Section 6. The conclusions and future work are presented in Section 7.

2. Related work

Video stabilization algorithms can generally be divided into three
categories: (1) 2D methods [8–11,13–15,17], (2) 3D methods [11,
17,25–29], and (3) learning-based methods [30–35]. The 2D and 3D
methods are considered conventional but differ in the assumed global
camera motion model. A 2D method assumes that the global cam-
era motion between consecutive frames is an affine or homography
transformation, whereas 3D methods try to reconstruct the relative 3D
camera poses for each video frame.

2.1. 2D methods

2D algorithms start by estimating 2D global camera motion, such
as affine transformation or Homography, between consecutive frames.
Optical flow [10,14] and geometry transformation [8,9,11,13,15,17]
are two conventional methods. Feature points are first extracted from
both video frames. Then RANSAC [18] is used to select a subset of
matched features to estimate the transformation parameters.

The next step is to derive a smooth motion path. The processed
motion path should be sufficiently smooth so as not to cause discomfort
during viewing. Several motion-smoothing methods have been pro-
posed in the literature, including low pass filtering [11], Kalman filter-
ing [20,36,37], Gaussian Filtering [10], Spline Smoothing [9], Motion
Vector Integration [15], etc. Grundmann et al. [13] and Liu et al. [11]
state that a desirable stable camera path should follow the cinematogra-
phy principles. Grundmann et al. [13] also propose an offline algorithm
based on Linear Program optimization with L1-smoothness constraints
to find a camera path obeying such principles.

The 2D method achieves a great balance of robustness and effi-
ciency and thus is a great choice for real-time development. Optical
flow [10,14] and geometry transformation [8,9,11,13,15,17] are two
conventional ways to estimate the 2D inter-frame motion. The latter is
becoming more popular because of its efficiency and robustness. Geom-
etry transformation-based methods directly estimate 2D transformation
due to camera jitters between adjacent video frames. Feature points
are first extracted from both video frames. Then, a subset of matched
feature points is selected to estimate the transformation parameters
using the RANSAC [18] algorithm, whose performance heavily depends

on a user-specified parameter.
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2.2. 3D methods

3D methods stabilize videos by reconstructing the camera poses in
3D space. Liu et al. [11] proposed to use Structure-from-Motion(SfM)
to compute the relative camera and sparse feature trajectory in 3D
space. Then each frame is wrapped to a user-specified path with the
‘‘content-preserving’’ principles to generate a stable virtual output. To
avoid reconstructing long camera and feature trajectory, Liu et al. [17]
smooth the basis trajectories of the subspace formed by the 3D feature
track. Goldstein et al. [25] used epipolar constraints to estimate the
fundamental matrices accounting for the stabilized 3D camera motion,
reducing the dependency on long feature tracks. Methods [26,27] using
gyroscope are also proposed to estimate and 3D rotation. Additional
hardware, such as depth sensor [28] and light field cameras [29], are
also used to estimate the 3D camera motion and synthesize the stable
virtual video.

Generally speaking, 2D methods are more robust and faster than
3D methods, but the 2D motion is insufficient to deal with complex
scenes with significant depth variations and severe parallax. On the
other hand, 3D methods can handle depth variation and generate
great stabilized results in principle. However, the 3D motion model
estimation is fragile to various degeneration, such as feature tracking
failure, motion blue, etc. Besides, 3D methods often have expensive
computational costs or require additional hardware devices. Hence, it
is much slower and less robust than 2D methods, which limits its usage
in real-time applications.

2.3. Learning-based methods

Recently DNN based video stabilization has attracted more and
more attention. According to [12], StabNet [12,30] is the first deep-
learning approach for video stabilization, where an encoder and multi-
grain transformation regressor are trained under a Siamese network.
The authors of StabNet [30] also collect 61 pairs of training videos. Xu
et al. [31] train a GAN network to extract the affine transformation for
warping unsteady frames.

Instead of predicting transformations between images or in coarse
grid level, PWStableNet [32] learns a pixel-wise warping map through a
cascade encoder–decoder based on the siamese network. Yu et al. [33]
first run a 2D method to stabilize the video. Then the optical flows
are computed and fed into an encoder–decoder network to train a
pixel-wise warp map. Choi et al. [34] propose an unsupervised deep
approach that iteratively interpolates the input video to a stable video
without cropping. Another unsupervised method is suggested by Shi
et al. [35], where gyroscopes provide the actual camera poses.

It is noted that the performances of these learning-based methods
highly depend on the training data [12] and can suffer from large
motions [35]. Due to the lack of publicly available data sets, the
conventional methods are more robust and perform better in a general
setting than the learning-based methods [12]. Learning-based meth-
ods are typically computationally demanding and also unsuitable for
real-time applications.

2.4. Real-time methods

Although most techniques are offline for post-processing, several
real-time approaches [8,9,14,19,37,38] have been studied for video sta-
bilization. Ratakonda et al. [38] uses Integration Projection Matching,
which is very computationally efficient for computing the translation
of consecutive frames. However, the method is limited as they assume
camera motions are always translational. Most of the current real-
time methods [8,19,37] are geometry-transformation-based, in which
RANSAC is used to estimate the inter-frame transformation, and Mod-
ified Kalman filter [14,19,37], Spline smoothing [9], and low-pass
3

filter [8] is employed to smooth the motion parameters on-the-fly.
Fig. 2. Match selection. (a) Motion vectors of feature points belonging to foreground
moving and background static feature points. (b) Motion vectors of background only.
(c) Histogram of model error estimated with background and foreground feature points
and (d) with background feature points only.

3. Inter-frame global motion estimation

3.1. Match selection

Matches returned by FLANN are outliers contaminated. There are
three main types of outliers: (1) matches with low matching scores, (2)
matches belonging to moving foreground objects which would disturb
the estimation of the global camera motion, and (3) matches with
high matching scores but do not correspond to the same 3D point.
We could use a threshold for the first type of outliers to filter out the
low-score matches. Although finding a generic threshold that works
well for all images is nearly impossible, a popular alternative is the
ratio test proposed in [18]. Therefore, we use the ratio test to filter
the matches returned by FLANN and pick the 1024 matches with the
highest matching scores.

Scenes with moving foreground objects are always challenging to a
video stabilization algorithm because the algorithm cannot distinguish
whether the displacements of image contents in consecutive frames are
caused by foreground object movement or camera motion. For example,
a camera can remain stationary while foreground objects actually
move. Then, any non-stationary motion estimated by those moving
feature matches would be erroneous. On the contrary, the movements
of background objects in an image purely result from camera motion
and are ideal for camera motion estimation. For a general scene where
static background objects are relatively far away from the camera,
background objects’ 2D motions usually share a similar direction, as
shown in Fig. 2(a). Based on this observation, we first compute the 2D
motion direction for each match by first subtracting the corresponding
feature point coordinates and then normalizing the difference:

𝐯 =
𝐈𝑛𝑒𝑥𝑡 − 𝐈𝑐𝑢𝑟

‖𝐈𝑛𝑒𝑥𝑡 − 𝐈𝑐𝑢𝑟‖2
(1)

where 𝐈𝑐𝑢𝑟 is a feature point in the current frame, and 𝐈𝑛𝑒𝑥𝑡 is the
corresponding feature point in the next frame, v is the normalized
motion vector.

We filter out those matches whose directions are one standard
deviation away from the average direction. As shown in Fig. 2(b)(c)(d),
this simple pre-processing step effectively eliminates most matches
from foreground objects and results in a more accurate global camera
model, where the model error is defined in Eq. (32).
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Fig. 3. Robust Affine estimation. (a) If RANSAC error threshold (𝜎 = 0.05) is small, good matches are filtered out. (b) AC-RANSAC: The error threshold is statistically computed,
which provides a well balanced between the number of matches and the correctness. (c) Error threshold 𝜎 = 0.3. All the matches (including false matches) are returned.
In the next section, we will discuss that the parallel implementation
of AC-RANSAC can only handle less than 1024 matches due to GPU’s
inherent hardware limitation, which makes match selection a necessary
step. The third type of outliers can be effectively removed by robust
estimation techniques such as RANSAC or AC-RANSAC.

3.2. Parallel AC-RANSAC

We choose our camera motion model to be the simplified affine
transformation as it provides an excellent trade-off between effective-
ness and complexity [15]:

𝐴 =
⎡

⎢

⎢

⎣

𝑠 ⋅ cos(𝜃) −𝑠 ⋅ sin(𝜃) 𝑡𝑥
𝑠 ⋅ sin(𝜃) 𝑠 ⋅ cos(𝜃) 𝑡𝑦

0 0 1

⎤

⎥

⎥

⎦

(2)

where 𝑠 is the scale, 𝜃 is the rotation, and 𝑡𝑥 and 𝑡𝑦 are translations in
𝑥, 𝑦 axis.

Feature matching plays a vital role in estimating 𝐴, but matches
returned by matching algorithms are often outlier-contaminated. There-
fore robust estimation techniques such as RANSAC [18] are required.

RANSAC randomly draws 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 samples to estimate a temporary
model 𝐴𝑡𝑒𝑚𝑝. Then it counts the number of inliers according to a
threshold 𝜎(specified by the user) on the residual error. After 𝑁𝑖𝑡𝑒𝑟
iterations, the model with the largest number of inliers is returned.
Finally, all the inliers are used to generate a final robust model. In our
case, we need 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 2 samples to estimate 𝐴𝑡𝑒𝑚𝑝.

The correct choice of 𝜎 is critical but depends profoundly on the
underlying data and model. If 𝜎 is too small, numerous true inliers
are classified as outliers and eliminated. If it is too large, the algo-
rithm treats many outliers as inliers, and an inaccurate model will be
generated, as shown in Fig. 3.

AC-RANSAC [39,40] avoids the problem of manually setting 𝜎
arising in RANSAC by leveraging an a contrario criterion, which has
been successfully applied to estimating Homography [41], Fundamen-
tal matrix [39], and Structure-from-Motion [42]. Here, we extend it to
estimating affine model and apply it to affine model estimation and
video stabilization.

The essence of AC-RANSAC is that an observed geometric event is
significant if the expectation of its occurrences is minimal in a random
image [40]. In our case, a subset of feature matches is significant to the
model 𝐴𝑡𝑒𝑚𝑝 if the occurrence of this subset’s matches compatible with
𝐴𝑡𝑒𝑚𝑝 is minimal, assuming all features and matches are independent
and uniformly distributed. Hence, we can use the most meaningful
subset of matches that complies with 𝐴𝑡𝑒𝑚𝑝 as the proxy of the largest
consensus support subset of 𝐴𝑡𝑒𝑚𝑝.

The meaningfulness of a set of feature matches is quantified by the
expected number of false alarms (NFA), defined as [39–41]

𝑁𝐹𝐴(𝑘) = 𝑁𝑜𝑢𝑡𝑐𝑜𝑚𝑒(𝑛 −𝑁𝑠𝑎𝑚𝑝𝑙𝑒)
(

𝑛
𝑘

)(

𝑘
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

)

𝛼𝑘−𝑁𝑠𝑎𝑚𝑝𝑙𝑒 (3)

- 𝑁𝑜𝑢𝑡𝑐𝑜𝑚𝑒 is the number of possible models (In the case of affine
model, 𝑁𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 1).

- 𝑛 is the total number of feature matches.
- 𝑘 is the number of inliers.
4

- 𝛼 is the probability of feature matches being an inlier assuming
they follow a uniform distribution

Indeed, if there are 𝑘 inliers, a total of
( 𝑘
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

)

inliers would
generate 𝐴𝑡𝑒𝑚𝑝. Under the null hypothesis that all data are independent
and uniformly distributed, there are

(𝑛
𝑘

)

number of 𝑘 tuples out of the
total 𝑛 feature matches. The number 𝑘 of inliers is usually unknown,
so all values of 𝑘 (from 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 + 1 to 𝑛) are tested, which gives rise to
the factor (𝑛 − 𝑁𝑠𝑎𝑚𝑝𝑙𝑒). The probability of all 𝑘 matches are inliers is
𝛼𝑘−𝑁𝑠𝑎𝑚𝑝𝑙𝑒 because the 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 ones used to yield 𝐴𝑡𝑎𝑚𝑝 have zero errors
by default. For a rigorous proof of (2), we refer the reader to [39,40].

Similar to [41], let 𝛼0 be the ratio of the area a disk with radius 1
and the area of the image. Then 𝛼 can be defined as

𝛼 = 𝜖2𝑘𝛼0 =
𝜖2𝑘𝜋

image size (4)

where 𝜖𝑘 is the 𝑘th least error among all feature matches.
Therefore, the formula of the NFA for our simplified affine transfor-

mation is

𝑁𝐹𝐴(𝑘) = (𝑛 − 2)
(

𝑛
𝑘

)(

𝑘
2

)

(

𝜖2𝑘𝜋
image size

)𝑘−2

(5)

To find the largest consensus support subset of 𝐴𝑡𝑒𝑚𝑝 generated by
𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 2 random matches, we can first sort all the matches ascend-
ingly by the residual error, then compute the NFA(k) according to (4)
for 𝑘 from 3 to 𝑛 (since the selected 2 random matches to generate
𝐴𝑡𝑒𝑚𝑝 have 0 error). Finally, the first 𝑘 matches where 𝑘 minimizes
𝑁𝐹𝐴(𝑘) are chosen to be the consensus support set of 𝐴𝑡𝑒𝑚𝑝. The above
procedure is summarized in Algorithm 1.

Algorithm 1 Parallel AC-RANSAC for affine model
1: procedure Parallel AC-RANSAC(𝑀,𝑁𝑖𝑡𝑒𝑟)

⊳ 𝑀 is the list of matches
⊳ 𝑁𝑖𝑡𝑒𝑟 is the number of iterations

2: 𝐿𝑟𝑎𝑛 = Generate a list of 2𝑁𝑖𝑡𝑒𝑟random numbers
3: minNFA = ∞
4: nBlocks = dim3(𝑁𝑖𝑡𝑒𝑟, 1, 1)
5: nThreads = dim3(32, 32, 1)
6: run AC-RANSAC-KERNEL with nBlocks and nThreads
7: model = element in models with smallest NFA
8: end procedure
9: procedure AC-RANSAC-KERNEL(𝑚𝑜𝑑𝑒𝑙𝑠)

10: Thread0 estimate affine model 𝐴𝑡𝑒𝑚𝑝
11: Each thread compute model error for each match
12: Block-wise Radixsort for model errors
13: Each thread computes NFA for each match
14: Use reduction to find the model with min NFA in the block
15: end procedure

As opposed to RANSAC, without any user-specified thresholds, AC-
RANSAC adaptively chooses the most meaningful set in the sense of
generating the model as the largest consensus support set. However,
AC-RANSAC requires sorting all data samples at each iteration. With
a large number of iterations, AC-RANSAC becomes impractical. Due to
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this high demand for computational power and opaqueness in interpret-
ing the a-contrario principle, AC-RANSAC has yet to become pervasive
n many Computer Vision tasks. To our best knowledge, we are the first
o apply AC-RANSAC to video stabilization.

Taking advantage of the parallel nature of AC-RANSAC, we propose
parallel optimization and real-time CUDA implementation of AC-

ANSAC. The key idea is to process each AC-RANSAC iteration in
arallel and combine the results at the last step. In the CUDA pro-
ramming model, threads are organized into thread blocks, and grids
old thread blocks. On current GPUs, a thread block can contain no
ore than 1204 threads. Each thread has its private local memory, and

ach thread block has shared memory accessible to all threads of the
lock. The global, constant, and texture memory optimized for different
emory usages are visible to all threads [43].

Specifically, each CUDA thread block is responsible for one AC-
ANSAC iteration, and each thread in a thread block is used to estimate

he error for each feature meach. The main steps are as follows:

1. Generate 2𝑁𝑖𝑡𝑒𝑟 of random integers ranging from 1 to 𝑀 in CPU
host, where 𝑁𝑖𝑡𝑒𝑟 is the number of iteration, and 𝑀 is the total
number of feature matches.

2. Thread 0 of each thread block retrieves two random numbers
and the corresponding feature matches from the constant memory
in GPU, and then uses the two matches to estimate a simplified
affine model 𝐴𝑡𝑒𝑚𝑝.

3. Each thread retrieves a feature match according to its thread ID
and computes the error to the model 𝐴𝑡𝑒𝑚𝑝 associated with the
block.

4. The 𝑀 number of errors computed in the previous step for each
block is sorted ascendingly by blockwise RadixSort.

5. Each thread in a block computes 𝑁𝐹𝐴(𝑘), where k is the same as
the thread ID. Reduction [44] is used to find the minimal 𝑁𝐹𝐴
within a block. Thread 0 stores the minimal NFA for the block
and 𝐴𝑡𝑒𝑚𝑝.

6. Finally, the NFAs and their models are sent back to the CPU host,
and CPU finds the minimal NFA and its corresponding model
𝐴𝑡𝑒𝑚𝑝 which is the final model.

The whole parallel AC-RANSAC is also shown in Algorithm 1, and
he specific configuration of CUDA are detailed in the experiment
ection.

. Least squares-based motion stabilization

After estimating a robust affine model 𝐴, we can extract the motion
arameters 𝑠, 𝜃, 𝑡𝑥, 𝑡𝑦, from which we need to obtain a stable camera
otion without annoying shakes and perturbation. There are multiple
ays to approach this problem, such as low pass filter [11], Kalman

ilter [20,36,37], Gaussian Filter [10], Spline Smoothing [9], Motion
ector Integration [15] and so on. Here, we propose a novel least
quares-based formulation for finding smooth camera motions obeying
inematography principles.

For ease of notation, from now on, we denote the motion parameter
s 𝑚, which can be 𝑠, 𝜃, 𝑡𝑥 or 𝑡𝑦. We start by considering the problem of
inding the stable camera motions as a least squares optimization:

arg min
𝑚1 ,…𝑚𝑛

𝑛
∑

𝑖=1
(𝑚𝑖 − 𝑚𝑖)2 + 𝜆

𝑛
∑

𝑖=2
(𝑚𝑖 − 𝑚𝑖−1)2 (6)

here

- 𝑚𝑖(𝑚𝑖) is the original(stabilized) camera motion for the 𝑖th frame.
- 𝑛 is the current frame number.

The data term ∑𝑛
𝑖=1(𝑚𝑖−𝑚𝑖)2 ensures that the difference between the

original and stabilized motions is small in order to reduce the distortion
introduced in warping. The regularization term ∑𝑛

𝑖=2(𝑚𝑖 − 𝑚𝑖−1)2 guar-
antees that the estimated camera motions (𝑚 ,… , 𝑚 ) are stable. The
5

1 𝑛
regularization parameter 𝜆 controls the degree of motion smoothness
and the tracking ability of the stable camera motions (𝑚1,… , 𝑚𝑛)

This formulation and its variants are used in offline video stabiliza-
tion [14,16] and yield good results. However, (6) in [14,16] operates
in a batch fashion that computes all the stable motions at once offline.
Next, we propose three new formulations based on (6) that robustly
estimate the current stabilized motion online in real-time.

4.1. A direct approach

For (6) to be applicable to an online and real-time manner, a direct
modification is

𝑚𝑛 = arg min
𝑚𝑛

𝑛−1
∑

𝑖=1
(𝑚𝑖 − �̂�𝑖)2 + (𝑚𝑛 − 𝑚𝑛)2+ (7)

𝜆
𝑛
∑

𝑖=2
(�̂�𝑖 − �̂�𝑖−1)2 + 𝜆(𝑚𝑛 − �̂�𝑛−1)2

here we try to find the current estimate 𝑚𝑛 using all initial esti-
mates 𝑚1,… , 𝑚𝑛 and all previous stabilized results �̂�1,… , �̂�𝑛−1. We can
further simplify (7) to:

𝑚𝑛 = arg min
𝑚𝑛

(𝑚𝑛 − 𝑚𝑛)2 + 𝜆(𝑚𝑛 − �̂�𝑛−1)2 (8)

Since (8) is quadratic, the minimum occurs when the derivative is
ero. The solution to (8) is

𝑚𝑛 =
𝑚𝑛 + 𝜆�̂�𝑛−1

1 + 𝜆
(9)

However, (9) is simply the weighted average of the last stabilized
motion �̂�𝑛−1 and the current motion 𝑚𝑛, where the weight is controlled
y 𝜆. Hence, (9) has a limited capability of stabilizing the current frame,

as shown in Fig. 4.

4.2. Modified Recursive Least Squares Stabilization (MRLS)

The direct approach provides a formulation that runs online and in
real-time but with a limited stabilization ability. Although (6) operates
in a batch fashion, it is still suitable for real-time stabilization if we can
efficiently and robustly estimate the current stabilized motion.

At the 𝑛th frame, suppose we compute (𝑚1,… , 𝑚𝑛) in (6) in real-
ime, then we can use 𝑚𝑛 as the stabilized motion for current frame,

i.e. �̂�𝑛 = 𝑚𝑛. However, (6) does not take into account the past stabilized
otions (�̂�1,… , �̂�𝑛−1) when computing 𝑚𝑛, hence there is no guarantee

that (�̂�1,… , �̂�𝑛−1, �̂�𝑛 = 𝑚𝑛) will form a smooth path. To remedy this,
we further propose the following cost function:

arg min
𝑚1 ,…𝑚𝑛

𝑛
∑

𝑖=1
(𝑚𝑖 − 𝑚𝑖)2 + 𝜆1

𝑛
∑

𝑖=2
(𝑚𝑖 − 𝑚𝑖−1)2 + 𝜆2

𝑛−1
∑

𝑖=1
(𝑚𝑖 − �̂�𝑖)2 (10)

Similar to (6), here (10) tries to estimate an augmented path
𝑚1,… , 𝑚𝑛) that starts at the first frame and ends at the current frame,

and �̂�𝑛 is set to 𝑚𝑛 for the next round of estimation.
The data term ∑𝑛

𝑖=1(𝑚𝑖 − 𝑚𝑖)2 ensures that the distortion between
he original path (𝑚1,… , 𝑚𝑛) and the augmented path is small. The

augmented path is guaranteed to be smooth by the minimization of the
first regularization term 𝜆1

∑𝑛
𝑖=2(𝑚𝑖 − 𝑚𝑖−1)2. Furthermore, the second

regularization term 𝜆2
∑𝑛−1

𝑖=1 (𝑚𝑖−�̂�𝑖−1)2 secures that the augmented path
is similar to the previous smoothed path (�̂�1,… , �̂�𝑛−1), making sure that
(�̂�1,… , �̂�𝑛−1, �̂�𝑛 = 𝑚𝑛) will form a smooth curve, as shown in Fig. 5.

Similarly, (10) is quadratic, so we can find the optimal augmented
path (𝑚1,… , 𝑚𝑛) to achieve the minimum of (10) by setting all partial
erivatives to zero, which is equivalent to solve the system of linear
quations (11), given in Box I. The derivation for (11) is detailed in
ppendix A. Note that (11) can be written compactly in matrix form
𝑛𝐦𝑛 = 𝐘𝑛.

For small 𝐒𝑛, we could just invert it to find �̂�𝑛, i.e. �̂�𝑛 = 𝑚𝑛 =
[

𝐒−1𝐘
]

, where [⋅] denotes 𝑖th element of a vector. However, the size
𝑛 𝑛 𝑛 𝑖
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(1 + 𝜆1 + 𝜆2) −𝜆1 0 ⋯ ⋯ 0
−𝜆1 (1 + 2𝜆1 + 𝜆2) −𝜆1 ⋱ ⋱ ⋮
0 −𝜆1 (1 + 2𝜆1 + 𝜆2) −𝜆1 ⋱ ⋮
0 ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ −𝜆1 (1 + 2𝜆1 + 𝜆2) −𝜆1
0 ⋯ ⋯ 0 −𝜆1 (1 + 𝜆1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐒𝑛

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚1
𝑚2
𝑚3
⋮

𝑚𝑛−1
𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝐦𝑛

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚1 + 𝜆2�̂�1
𝑚2 + 𝜆2�̂�2
𝑚3 + 𝜆2�̂�3

⋮
𝑚𝑛−1 + 𝜆2�̂�𝑛−1

𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐘𝑛

(11)

Box I.
Fig. 4. Stabilization of translation in 𝑥 direction, i.e. 𝑚 = 𝑡𝑥, via the original approach
(6), the direct approach (7) and MRLS (10). (a) Comparison of stabilization effects
of the three formulae. (b) The direct approach has limited freedom to stabilize the
motions. As 𝜆 increases, it can over-stabilize the original motions resulting in a static,
instead of stabilized, video. (c) MRLS makes use of all the previous estimates for
stabilization and avoids over-stabilizing the motions. The stabilized motions can still
reflect the intentional motion of the camera.

of 𝐒𝑛 increases with 𝑛, which makes computing 𝐒−1 not practical to
a real-time application for large 𝑛. Since �̂�𝑛 is the quantity that we
try to estimate, we do not have to compute the complete inverse of
𝐒 . Instead, knowing the last row of 𝐒−1 is enough for computing �̂� .
6

𝑛 𝑛 𝑛
Fig. 5. Stabilization of translation in 𝑥 direction, i.e. 𝑚 = 𝑡𝑥. �̂� denotes final stabilized
estimates. 𝐦𝑘 denotes the optimal solution (𝑚1 ,… , 𝑚𝑘) to (6) for (a) or (10) at frame
𝑘 for (b). (a) At each frame, (6) tries to estimate an augmented path (𝑚1 ,… , 𝑚𝑘)
without considering the previous estimate (�̂�1 ,… , �̂�𝑘−1). (b) (10) assures that �̂�𝑖 and
𝑚𝑖 , 𝑖 = 1,… , 𝑛 − 1 are similar, so (�̂�1 ,… , �̂�𝑘−1 , �̂�𝑘 = 𝑚𝑘) will be smooth.

Thanks to the unique structure of 𝐒𝑛, we derive a recursive formula
for computing the last row of 𝐒−1𝑛 by recursively constructing the row
echelon form of 𝐒𝑛 from 𝐒𝑛−1 in 𝑂(𝑛) operations.

The key observations are (1) that the (𝑛−2)th row of 𝐒𝑛−1’s echelon
form is the same as 𝐒𝑛’s echelon form and (2) that the operations to
derive the last row of 𝐒𝑛’s echelon form from the (𝑛 − 2)th row is
straightforward.

Theorem 1. Let 𝑛−1 = [𝑆𝑛−1|𝐼] be an augmented matrix, where 𝐼 is
the identity matrix. 𝑒

𝑛−1 = [𝑆𝑒
𝑛−1|𝐴𝑛−1] is the echelon form of 𝑛−1 with

𝑏 = −𝜆1 as leading term for each row. Then {𝑆𝑛−1}𝑛−2 ∈ R2(𝑛−1) and
{𝑆𝑛}𝑛−2 ∈ R2𝑛 have the form:

{𝑛−1}𝑛−2 = (12)
[

0 ⋯ 𝑏 𝑥(𝑛−1)1 𝑦(𝑛−1)1 ⋯ 𝑦(𝑛−1)𝑛−3 0
]

{𝑛}𝑛−2 = (13)
[

0 ⋯ 𝑏 𝑥(𝑛−1)1 0 𝑦(𝑛−1)1 ⋯ 𝑦(𝑛−1)𝑛−3 0 0
]

where {⋅}𝑖 denotes the 𝑖th row of a matrix, and

𝑥(𝑛−1)1 = 𝑏2

𝑐 − 𝑥(𝑛−2)1

(14)

𝑦(𝑛−1)𝑖 =
−𝑦(𝑛−2)𝑖 𝑏

𝑐 − 𝑥(𝑛−2)1

, 𝑖 = 1… 𝑛 − 3 (15)

𝑦(𝑛−1)𝑛−2 = 𝑏
𝑐 − 𝑥(𝑛−2)1

(16)

where

𝑎 = (1 + 𝜆1 + 𝜆2) (17)

𝑏 = −𝜆1 (18)

𝑐 = (1 + 2𝜆 + 𝜆 ) (19)
1 2
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𝑑 = (𝜆1 + 1) (20)

Proof. See Appendix B □

Once we have {𝑛}𝑛−2, we can obtain the {𝑛}𝑛 by two more row
operations:

𝑏2

𝑐 − 𝑥(𝑛−1)1

(

{𝑛}𝑛−1 − {𝑛}𝑛−2
)

→ {𝑛}𝑛−1 (21)

𝑐 − 𝑥(𝑛−1)1
𝑞𝑛

(

{𝑛}𝑛 − {𝑛}𝑛−1
)

→ {𝑛}𝑛 (22)

where 𝑞𝑛 = 𝑐𝑑−𝑥(𝑛−1)1 𝑑−𝑏2. Note that the first of half of {𝑛}𝑛, denoted
as {𝑛}1𝑠𝑡𝑛 , is a unity row vector with the last element being 1, and its
second half, denoted as {𝑛}2𝑛𝑑𝑛 , is {𝐒−1𝑛 }𝑛 (the last row of 𝐒−1𝑛 ), which
can be used to find �̂�𝑛:

�̂�𝑛 = 𝑚𝑛 = {𝐒−1𝑛 }𝑛 ⋅ 𝐘𝑛 = {𝑛}2𝑛𝑑𝑛 ⋅ 𝐘𝑛 (23)

To estimate �̂�𝑛 recursively, we will first need to store {𝑆𝑛−1}𝑛−2 and 𝐘𝑛
which takes 𝑂(𝑛) storage, then use (21), (22) to compute �̂�𝑛 which takes
𝑂(𝑛) operations, and finally store {𝑆𝑛}𝑛−1 for estimating �̂�𝑛+1 which
also takes 𝑂(𝑛) storage. Therefore, solving (11) has 𝑂(𝑛) time and space
complexity in total.

Note that (11) differs from a typical recursive least squares [45] in
that 𝐒𝑛, 𝐦𝑛 and 𝐘𝑛 change at each time step. Hence we refer (11) as
the modified recursive least square(MRLS) in our algorithm pipeline.

4.3. Cinematography Principles guided Modified Recursive Least Squares
Stabilization (C-MRLS)

MRLS assures that the estimated path is smooth and close to the
original path by adding the two regularization terms. However, ac-
cording to cinematography principles [11,13], the desired stabilized
path should have constant velocity and constant accelerations, i.e., the
second and third derivatives for the path are zero. For our stabilized
path to have these cinematographic characteristics, we first define two
proxies as the variations of velocity and acceleration.

From finite difference methods [46], the backward difference ap-
proximation for the second and the third derivatives are [46]

(𝑑𝑣)𝑖 = 𝑚𝑖 − 2𝑚𝑖−1 + 𝑚𝑖−2 (24)

(𝑑𝑐)𝑖 = 𝑚𝑖 − 3𝑚𝑖−1 + 3𝑚𝑖−2 − 𝑚𝑖−3 (25)

Note that (24) and (25) have first-order truncation error [46]. We could
also choose other more complex forms for approximating 𝑑𝑣 and 𝑑𝑐
with smaller truncation errors in principle.

Hence, the desired cost function following the cinematography prin-
ciple is

arg min
𝑚1 ,…𝑚𝑛

𝑛
∑

𝑖=1
(𝑚𝑖 − 𝑚𝑖)2 + 𝜆1

𝑛
∑

𝑖=2
(𝑚𝑖 − 𝑚𝑖−1)2 + 𝜆2

𝑛−1
∑

𝑖=1
(𝑚𝑖 − �̂�𝑖)2 (26)

+ 𝜆3
𝑛
∑

𝑖=3
(𝑑𝑣)2𝑖 + 𝜆4

𝑛
∑

𝑖=4
(𝑑𝑐)2𝑖

The path that minimizes (26) will be smooth and have near-constant ve-
locity and near-constant acceleration, which obeys the cinematography
principles.

Since (26) is also quadratic, we can find the solution by solving the
corresponding system of linear equations whose data matrix is (27),
given in Box II. The derivation for (27) and its linear solver are the
same as (11). Hence we refer (27) as the cinematography principles
guided modified recursive least square(C-MRLS). As shown in Fig. 6,
C-MRLS avoids rapid changes in the resulting path, and thus the result
is smoother than that of MRLS but well still preserves the intentional
camera global motion.
7

Fig. 6. Comparison of MRLS and C-MRLS in translation in 𝑥 direction, i.e. 𝑚 = 𝑡𝑥. The
result for C-MRLS is smoother than MRLS but well preserves the intentional camera
global motion.

4.4. Modified Sliding Window Least Squares Stabilization (MSWLS)

In MRLS and C-MRLS, all previous frames are used to estimate
the stable motion, which takes 𝑂(𝑛) time and space complexity. As 𝑛
increases, MRLS and C-MRLS will eventually become impractical. In
practice, the frames far before the current frame contain little informa-
tion for the inference of the current frame’s stable motion. Hence, we
propose to use only the latest 𝑁 frames to estimate the motion of the
current frame, where 𝑁 is specified by users:

arg min
𝑚𝑛−𝑁+1 ,…𝑚𝑛

𝑛
∑

𝑖=𝑛−𝑁+1
(𝑚𝑖 − 𝑚𝑖)2 + 𝜆1

𝑛
∑

𝑖=𝑛−𝑁+2
(𝑚𝑖 − 𝑚𝑖−1)2 (28)

+ 𝜆2
𝑛−1
∑

𝑖=𝑛−𝑁+1
(𝑚𝑖 − �̂�𝑖)2 + 𝜆3

𝑛
∑

𝑖=𝑛−𝑁+1
(𝑑𝑣)2𝑖 + 𝜆4

𝑛
∑

𝑖=𝑛−𝑁+1
(𝑑𝑐)2𝑖

(28) not only emphasizes the most relevant information in the time
domain but also can be regarded as a failsafe for MRLS. Similarly, to
find the 𝐦 that minimizes (10), we can set all the partial derivatives to
zero, which is equivalent to solving the linear system:

𝐒𝑁 ⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚𝑛−𝑁+1

𝑚2

⋮

𝑚𝑛−1

𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏟⏞⏞⏟
𝐦′
𝑁

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚𝑛−𝑁+1 + 𝜆2�̂�𝑛−𝑁+1

𝑚𝑛−𝑁+2 + 𝜆2�̂�𝑛−𝑁+2

⋮

𝑚𝑛−1 + 𝜆2�̂�𝑛−1

𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐘𝑁

(29)

�̂�𝑛 = 𝑚𝑛 = {𝐒−1𝑁 }𝑁𝐘𝑁 (30)

where {𝐒−1𝑁 }𝑁 can be precomputed or set to {𝑛}2𝑛𝑑𝑛 when 𝑛 = 𝑁 in
MRLS, and 𝑁 is specified by users.

We see that saving 𝐘𝑁 requires 𝑂(𝑁) storage and computing �̂�𝑛
by (30) takes 𝑂(𝑁) operation, so MSWLS also has 𝑂(𝑁) time and
space complexity. For similar reason, we refer (29) as the modified
sliding window least square(MSWLS) in our algorithm pipeline. Our
least squares motion stabilization is summarized in Algorithm 2.

5. Motion compensation

After the stabilized motions are estimated, we need to warp the cur-
rent frame to generate the final stabilized frame. Let 𝐹𝑖, 𝐹 𝑖 denote the
𝑖th original frame and stabilized frame, 𝐴𝑖 denote the simplified affine
between 𝐹𝑖 and, 𝐹𝑖+1, 𝐴𝑖 denote the stabilized affine transformation
between 𝐹 𝑖 and 𝐹 𝑖+1. From Fig. 7, we see that 𝐹𝑛 relates 𝐹1 with

𝐹𝑛 =

( 𝑛
∏

𝑖=1
𝐴𝑖

)

𝐹1 =
(

𝐴𝑛 ⋅… ⋅ 𝐴1
)

𝐹1

and 𝐹 𝑛 relates 𝐹 1 with

𝐹 𝑛 =

( 𝑛
∏

𝐴𝑖

)

𝐹 1 =
(

𝐴𝑛 ⋅… ⋅ 𝐴1

)

𝐹 1

𝑖=1
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C
o
A
C
F

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(1 + 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4) −(𝜆1 + 𝜆3 + 3𝜆4) 𝜆3 + 3𝜆4 𝜆4 ⋯ ⋯ ⋯ 0

−(𝜆1 + 𝜆3 + 𝜆4) (1 + 2𝜆1 + 𝜆2 + 3𝜆3 + 4𝜆4) −(𝜆1 + 3𝜆3 + 6𝜆4) 𝜆3 + 4𝜆4 −𝜆4 ⋯ ⋯ 0

(𝜆3 + 𝜆4) −(𝜆1 + 3𝜆3 + 4𝜆4) (1 + 2𝜆1 + 𝜆2 + 4𝜆3 + 7𝜆4) −(𝜆1 + 3𝜆3 + 7𝜆4) (𝜆3 + 4𝜆4) −𝜆4 ⋯ 0

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

0 ⋯ (𝜆3 + 𝜆4) −(𝜆1 + 3𝜆3 + 4𝜆4) (1 + 2𝜆1 + 𝜆2 + 4𝜆3 + 7𝜆4) −(𝜆1 + 3𝜆3 + 7𝜆4) (𝜆3 + 4𝜆4) −𝜆4
0 ⋯ ⋯ −𝜆4 𝜆3 + 4𝜆4 −(𝜆1 + 3𝜆3 + 6𝜆4) (1 + 2𝜆1 + 𝜆2 + 3𝜆3 + 4𝜆4) −(𝜆1 + 𝜆3 + 𝜆4)

0 ⋯ ⋯ ⋯ 𝜆4 𝜆3 + 3𝜆4 −(𝜆1 + 𝜆3 + 3𝜆4) (1 + 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐒𝑛

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚1

𝑚2

𝑚3

⋮

𝑚𝑛−1

𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝐦𝑛

= 𝐘𝑛 (27)

Box II.
Algorithm 2 Least Squares-based Motion Stabilization
1: procedure C-MRLS(𝑚, 𝑛,Y,)
2: append 𝑚𝑛 to Y
3: construct  in (13) from (12) ⊳ differs from MSWLS
4: estimate �̂�𝑛
5: set the last element of (𝑚𝑛 + 𝜆2�̂�𝑛)

return �̂�,Y,
6: end procedure
7: procedure MSWLS(𝑚, 𝑛,Y)
8: append 𝑚𝑛 to Y
9: estimate �̂�𝑛 using (30) ⊳ differs from C-MRLS

10: remove 𝑚𝑛−𝑁+1 + 𝜆2�̂�𝑛−𝑁+1 from Y
11: set the last element of (𝑚𝑛 + 𝜆2�̂�𝑛)

return �̂�,Y
12: end procedure
13: procedure LS-Stabilize(𝑚, 𝑛,Y,)
14: if 𝑛 < 1 then
15: �̂� = 𝑚𝑛
16: append 𝑚1 + 𝜆2�̂�1 to Y
17: else if 𝑛 < 𝑁 then
18: [�̂�,Y,] = C-MRLS(𝑚, 𝑛,Y,)
19: else
20: [�̂�,Y] = MSWLS(𝑚, 𝑛,Y)
21: end if

return �̂�,Y,
22: end procedure

Therefore, the 𝑛th stabilized frame 𝐹 𝑛 can be obtained from the current
input 𝐹𝑛 by

𝐹𝑛 =

( 𝑛
∏

𝑖=1
𝐴𝑖

)

⋅

( 𝑛
∏

𝑖=1
𝐴𝑖

)−1

𝐹𝑛 (31)

=
(

𝐴𝑛 ⋅… ⋅ 𝐴1

)

⋅
(

𝐴−1
1 ⋅… ⋅ 𝐴−1

𝑛
)

𝐹𝑛

. Experiment and result

We implement our algorithm on a PC with a Core i7-6770 4.0 GHz
PU and a GeForce GTX2080 Ti GPU. SURF and FLANN are based
n the GPU implementation of OpenCV. We implement both Parallel
C-RANSAC and RANSAC on GPU with CUDA, and the rest is run on
PU. Table 1 presents the timing profile for the proposed algorithm.
or videos with resolutions of 1920 × 1080 or higher, we downsample

them to 1280 × 720 before further processing.
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Fig. 7. Global transformation relationship between original 𝐹𝑖 and stable 𝐹 𝑖 frames.

Table 1
Timing Performance of the proposed algorithm in milliseconds (Total time is computed
with parallel AC-RANSAC).

Resolution SURF and
FLANN

Parallel
AC-RANSAC

AC-
RANSAC

Motion
Smoothing

Total

320 × 240 6.83 3.19 79.75 0.14 12.59
640 × 360 8.48 5.10 128.52 0.56 16.21
1280 × 720 17.00 7.28 181.27 1.04 31.67
1920 × 1080 17.10 7.30 183.23 1.25 32.80

6.1. Inter-frame global motion estimation via parallel AC-RANSAC

6.1.1. Feature detection, matching, and match selection
We use SURF and FLANN as our feature detection and matching

method, as they provide a fair tradeoff of robustness and efficiency
[23,24]. We use OpenCV’s parallel implementation for SURF and
FLANN on GPU. As we can see from Table 1, SURF and FLANN
are the most time-consuming compared to other parts because of the
computation of SURF features and the descriptors. Since OpenCV’s GPU
implementation of SURF is at the pixel level, the number of pixels easily
dominates the number of CUDA cores in a GPU, which diminishes the
gain of parallelism when the image resolution is high.

6.1.2. RANSAC vs. AC-RANSAC
Compared to RANSAC, AC-RANSAC automatically selects thresholds

for inlier/outlier discrimination, but the extra computation of AC-
RANSAC prevents it from being used in real-time applications. We
hence propose the parallel AC-RANSAC implemented with CUDA on
GPU. To further reduce the processing time, we massively utilize the
on-chip shared memory. In our implementation, each thread inside
a thread block independently estimates the model error for a match.
Since a maximum of 1024 threads is allowed in a thread block in
GPU, only consecutive frames that generate less than 1024 matches
can be handled inherently, which is usually valid for videos with less

than 1920 × 1080 pixels. Otherwise, as described in 3.1, the matches
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Fig. 8. The threshold for RANSAC ranges from 0.001 to 0.3. Each data point in
RANSAC is the result of a run with a threshold value. For all the 10 testing data,
AC-RANSAC computes a model with more inliers (less outliers in the plot) and smaller
model error.

Fig. 9. Timing performance between GPU and CPU implementation of AC-RANSAC as
number of matches increases. The result is the average of three trials.

selection method is applied to choose the most 1024 robust matches
for AC-RANSAC.

For challenging frames that do not have enough feature points or
undergo significant non-ridge motion, etc., AC-RANSAC (or RANSAC)
will not be able to estimate a robust affine/homography model that
well explains the geometric transformation between the frames. In
such cases, the model returned by AC-RANSAC (or RANSAC) is ill-
conditioned. Hence, we discard the estimated simplified affine trans-
formation and set it to the identity matrix if the smallest singular value
of it is less than 0.001.

As discussed in 3.2, the drawback of AC-RANSAC is the high com-
putational complexity compared to RANSAC. As shown in Fig. 9, our
parallel implementation achieves 25X speed up and around 20 ms for
the 1024 matches. We use the number of inliers and model errors to
assess AC-RANSAC’s and RANSAC’s effectiveness. We define the model
error as

𝑒 = max
(

𝐴𝐈 − 𝐈 , 𝐈 − 𝐴−1𝐈
)

(32)
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𝑙 𝑟 𝑙 𝑟
where 𝐴 is the estimated affine model, 𝐈𝑙 is the feature point in the
current frame, and 𝐈𝑟 is the matched feature point in the next frame.

For RANSAC, we range the discrimination threshold from 0.001 to
0.5 and plot the number of inliers and model errors for each run. In
AC-RANSAC, the inliers are the matches whose evaluated errors are
smaller than the match that achieves minNFA. Since AC-RANSAC does
not require a threshold, there is only one data point for each video for
AC-RANSAC. As shown in Fig. 8, AC-RANSAC results in a model that
has more inliers and a smaller model error than RANSAC.

6.2. Stabilization comparison

We compare three real-time [19,37,47] and three offline video
stabilization algorithms [10,13,48] with the proposed algorithm, and
further quantify two essential aspects (distortion and smoothness) of
stabilization quality with two objectives metrics.

We use Inter-frame Transformation Fidelity (ITF) to compute the
distortion introduced by stabilization algorithms. ITF is a popular
evaluation metric of stabilization quality, which is defined as

𝐼𝑇𝐹 = 1
𝑁 − 1

𝑁−1
∑

𝑘=1
𝑃𝑆𝑁𝑅(𝐹𝑘+1, 𝐹𝑘) (33)

where 𝑁 is the total number of frames and

𝑃𝑆𝑁𝑅(𝐹𝑘+1, 𝐹𝑘) = 10 log10

(

𝑝𝑒𝑎𝑘𝑣𝑎𝑙2

𝑀𝑆𝐸(𝐹𝑘+1, 𝐹𝑘)

)

(34)

is the peak signal-to-noise ration between the two consecutive frames
with 𝑝𝑒𝑎𝑘𝑣𝑎𝑙 being the maximum pixel value and 𝑀𝑆𝐸(𝐹𝑘+1, 𝐹𝑘) the
mean square error between consecutive frames 𝐹𝑘 and 𝐹𝑘+1.

A higher value of ITF indicates smaller average inter-frame distor-
tion across the video and thus better stabilization quality. We compare
the proposed algorithm with other state-of-the-art stabilization algo-
rithms in terms of ITF. Since [10,37] use inpainting to fill the missing
borders of the stabilized frame, for a fair comparison, we crop all the
stabilized video by 20 pixels before computing ITF for the stabilized
videos produced by other algorithms.

We use the normalized decrease in feature point acceleration to
measure thesmoothness of a stabilized video, as feature points in a
smooth video should have zero or constant acceleration [13]. [37]
adopts such an idea to assess the smoothness of a stabilized video. For
each output video, we first extract SURF features for each frame and
perform matching to build feature trajectories. Then we compute the
sum of acceleration for each trajectory by

𝑉 (𝐼) =
∑

√

(

𝐼𝑥𝑖+1 − 2𝐼𝑥𝑖 + 𝐼𝑥𝑖−1
)2

+
(

𝐼𝑦𝑖+1 − 2𝐼𝑦𝑖 − 𝐼𝑦𝑖−1
)2

(35)

where (𝐼𝑥𝑖 , 𝐼
𝑦
𝑖 ) is the image coordinate of feature point 𝐼 at the 𝑖th

frame. Finally, the smoothness can be calculated as the average nor-
malized decrease in trajectory acceleration [37]:

𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 = 1
𝑁

∑

𝑘=1

|𝑉 𝑜
𝑘 − 𝑉 𝑠

𝑘 |

𝑉 𝑜
𝑘

(36)

where 𝑉 𝑜
𝑘 is the sum of acceleration of the trajectory in the original

video, and 𝑉 𝑠
𝑘 is the sum of acceleration in the stabilized video. An

output video with higher smoothness is superior.
We use the OpenCV implementations for [10,13], the official im-

plementation for [48] provided by Adobe After Effect, and the original
implementation or software available in GitHub for [19,37,47] pro-
vided by the authors. All algorithms are run on public data set available
in [13,47,48] and compared in terms of distortion and smoothness. We
compared LSstab with state-of-the-art real-time algorithms [19,37,47]
and offline algorithms [10,13,48] for videos with different resolu-
tions. Because the undefined borders of the stabilized outputs for the
algorithms above [10,13,19,37,47,48] are removed or inpainted, we
remove 10% border, i.e., 0.9 cropping ratio, before comparing the
results.
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Table 2
Comparison with real-time video stabilization algorithms. The average time per frame is reported in table. The best results in ITF and Smoothness are bolded. Processing times
below 33 ms are also highlighted.

Methods 320 × 240 640 × 360 1280 × 720 1920 × 1080

ITF( dB) Smooth Time ITF (dB) Smooth Time ITF (dB) Smooth Time ITF (dB) Smooth Time

Meshflow [47] 31.10 0.88 483.9 ms 26.48 0.75 612.5 ms 23.33 0.75 3.421 s 22.57 0.22 7.562 s
LP-Kalman-LP [19] 24.54 0.38 20.08 ms 22.15 0.33 21.58 ms 20.35 0.23 53.01 ms 21.44 0.12 94.91 ms
Frame-Orbit [37] 27.87 0.75 4.000 ms 24.25 0.71 7.300 ms 22.55 0.75 16.20 ms 21.97 0.13 27.70 ms
LSstab (ours) 28.68 0.82 12.59 ms 26.69 0.64 16.21 ms 24.41 0.79 31.67 ms 22.62 0.22 32.80 ms
Fig. 10. Comparison with different combination of 𝜆1 , 𝜆2 , 𝜆3 , 𝜆4.

As shown in Table 2, the proposed method does the best in mini-
mizing distortion, and [47] does the best in encouraging smoothness.
However, the processing time for [47] grows rapidly as video resolution
increases, even after we decrease the grid resolution to 0.8 of the
default value. As shown in Fig. 11, [37,47] and the proposed algorithm
are competitive to [10,13] compared to offline algorithms. [11,47]
have the best performance on average in terms of distortion and
smoothness.

To investigate the impact of the four regularization parameters
𝜆1, 𝜆2, 𝜆3, and 𝜆4, we run the proposed algorithm with different values
on the first video in Fig. 11.

As Fig. 10 shows, larger regularization parameters will encourage
smoothness. However, as they get larger and larger, the algorithm
will try to compensate for inter-frame global motions as much as
possible, resulting in a static video instead of a stable video. Moreover,
overcompensating inter-frame global motions will also introduce an
undefined area in the result frames, which makes the distortion more
significant.

6.3. Limitations

The choice of parameters has a direct impact on the quality of
stabilization. If 𝜆1, 𝜆2, 𝜆3, and 𝜆4 are set too large, the proposed
algorithm will produce an over-stabilized video and introduce a large
cropping area. On the other hand, if they are too small, the algorithm
cannot remove the jitters in the input video. We found that 𝜆1 =
2, 𝜆2 = 200, 𝜆3 = 50, 𝜆4 = 50 produce good empirical results. The
other limitation is the accumulated error in the proposed algorithm.
The stabilized frame is obtained through the accumulating products of
�̂� and 𝑚𝑖 based on (31) in the motion compensation stage so that any
wrong estimates will affect the subsequent frames.

7. Conclusions and future work

While most video stabilization algorithms are offline and require
future frames for smoothing, we propose an online real-time video sta-
bilization algorithm, LSstab, which stabilizes the incoming video frame
in real-time using only past frames. LSstab features a parallel realization
of the a-contrario RANSAC (AC-RANSAC) algorithm to estimate the
10
inter-frame camera motion parameters and a novel fast recursive least
squares algorithm to find the stable camera motion obeying cinematog-
raphy principles. Techniques such as inpainting can be readily included
in our algorithm. Currently, the cost function (26) does not include the
cropping area yet. In the future, one possible direction is to incorporate
a proxy of cropping area that is a function of 𝜆1 and 𝜆2 to the cost
function and further develop an adaptive approach for setting 𝜆1 and
𝜆2. The keyframe selection technique proposed in [13] can smoothly
be adapted to mitigate the accumulated error.
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Appendix A. Derivation of (10) in matrix form

𝐸 = 𝑃 + 𝜆1𝑄 + 𝜆2𝑈

=
𝑛
∑

𝑖=1
(𝑚𝑖 − 𝑚𝑖)2 + 𝜆1

𝑛
∑

𝑖=2
(𝑚𝑖 − 𝑚𝑖−1)2 + 𝜆2

𝑛−1
∑

𝑖=1
(𝑚𝑖 − �̂�𝑖)2

Taking all partial derivatives of 𝐸 w.r.t 𝑚1,… , 𝑚𝑛 and setting them to
zero, we have
𝜕𝐸
𝜕𝑚1

= 𝜕
𝜕𝑚1

[(𝑚1 − 𝑚1)2 + 𝜆1(𝑚2 − 𝑚1)2 + 𝜆2(𝑚1 − �̂�1)2] = 0

⇒ (1 + 𝜆1 + 𝜆2)𝑚1 − 𝜆1𝑚2 = 𝑚1 + 𝜆2�̂�1

For 𝑖 = 2,… , 𝑛 − 1
𝜕𝐸
𝜕𝑚𝑖

= 𝜕
𝜕𝑚𝑖

[(𝑚𝑖 − 𝑚𝑖)2 + 𝜆1(𝑚𝑖 − 𝑚𝑖−1)2 + 𝜆1(𝑚𝑖+1 − 𝑚𝑖)2+

𝜆2(𝑚𝑖 − �̂�𝑖)2] = 0

⇒ −𝜆1𝑚𝑖−1 + (1 + 2𝜆1 + 𝜆2)𝑚𝑖 − 𝜆1𝑚𝑖+1 = 𝑚𝑖 + 𝜆2�̂�𝑖

Finally,
𝜕𝐸
𝜕𝑚𝑛

= 𝜕
𝜕𝑚𝑛

[(𝑚𝑛 − 𝑚𝑛)2 + 𝜆1(𝑚𝑛 − 𝑚𝑛−1)2] = 0

⇒ −𝜆1𝑚𝑛−1 + (1 + 𝜆1)𝑚𝑛 = 𝑚𝑛

Therefore, solving (10) is equivalent to solve the system (11) of
linear equations.



Journal of Visual Communication and Image Representation 96 (2023) 103922J. Ke et al.

←←

←←
Fig. 11. Comparison with state-of-the-art video stabilization algorithms. Higher ITF and Smoothness means better stabilization result.
←←

←←

←←
Appendix B. Recursive solution for finding 𝒎𝒏 in (11)

Let 𝑎 = (1 + 𝜆1 + 𝜆2), 𝑏 = −𝜆1, 𝑐 = (1 + 2𝜆1 + 𝜆2), 𝑑 = (1 + 𝜆1)

For 𝑛 = 2, We have S2 =
[

𝑎 𝑏
𝑏 𝑑

]

, S−12 = 1
𝑎𝑑−𝑏2

[

𝑑 −𝑏
−𝑏 𝑎

]

, so

�̂�2 =
−𝑏(1 + 𝜆2)𝑚1 + 𝑎𝑚2

𝑎𝑑 − 𝑏2
(B.1)

For 𝑛 = 3,
We perform the Gauss-Jordan elimination on 𝐒3:

⎡

⎢

⎢

⎣

𝑎 𝑏 0 1 0 0
𝑏 𝑐 𝑏 0 1 0
0 𝑏 𝑑 0 0 1

⎤

⎥

⎥

⎦

(1)
←←←←←←←←←→

⎡

⎢

⎢

⎢

⎣

𝑏 𝑏2

𝑎 0 𝑏
𝑎 0 0

𝑏 𝑐 𝑏 0 1 0
0 𝑏 𝑑 0 0 1

⎤

⎥

⎥

⎥

⎦

(2)
←←←←←←←←←→

⎡

⎢

⎢

⎢

⎢

⎢

𝑏 𝑏2

𝑎 0 𝑏
𝑎 0 0

0 𝑎𝑐−𝑏2
𝑎 𝑏 − 𝑏

𝑎 1 0

0 𝑏 𝑑 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥
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⎣ ⎦
(3)
←←←←←←←←←→

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑏 𝑏2

𝑎 0 𝑏
𝑎 0 0

0 𝑏 𝑎𝑏2

𝑎𝑐−𝑏2 − 𝑏2

𝑎𝑐−𝑏2
𝑎𝑏

𝑎𝑐−𝑏2 0

0 𝑏 𝑑 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(4)
←←←←←←←←←→

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑏 𝑏2

𝑎 0 𝑏
𝑎 0 0

0 𝑏 𝑎𝑏2

𝑎𝑐−𝑏2 − 𝑏2

𝑎𝑐−𝑏2
𝑎𝑏

𝑎𝑐−𝑏2 0

0 0 𝑑 − 𝑎𝑏2

𝑎𝑐−𝑏2
𝑏2

𝑎𝑐−𝑏2 − 𝑎𝑏
𝑎𝑐−𝑏2 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5)
←←←←←←←←←→

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑏 𝑏2

𝑎 0 𝑏
𝑎 0 0

0 𝑏 𝑎𝑏2

𝑎𝑐−𝑏2 − 𝑏2

𝑎𝑐−𝑏2
𝑎𝑏

𝑎𝑐−𝑏2 0

0 0 1 𝑏2

𝑞3
− 𝑎𝑏

𝑞3
𝑎𝑐−𝑏2
𝑞3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Then, �̂�3 =
[

𝑏2

𝑞3
− 𝑎𝑏

𝑞3
𝑎𝑐−𝑏2
𝑞3

]

⋅ 𝐘3 where 𝑞3 = 𝑎𝑐𝑑 − 𝑏2𝑑 − 𝑎𝑏2𝑑

For 𝑛 = 4,

Note that first 3 row operations on 𝐒3 will yield the same result for
𝐒4. Hence, we can reuse the partial result of Gauss-Jordan elimination
of 𝐒 for 𝐒 . We first record the 2nd row of the above echelon form of
3 4
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←←

←←

←←←

N
a

f

𝐒3, 𝑥
(3)
1 = 𝑎𝑏2

𝑎𝑐−𝑏2 , 𝑦
(3)
1 = − 𝑏2

𝑎𝑐−𝑏2 , 𝑦
(3)
2 = 𝑎𝑏

𝑎𝑐−𝑏2 , then we have

⎡

⎢

⎢

⎢

⎢

⎣

𝑎 𝑏 0 0 1 0 0 0
𝑏 𝑐 𝑏 0 0 1 0 0
0 𝑏 𝑐 𝑏 0 0 1 0
0 0 𝑏 𝑑 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(3)
←←←←←←←←←→

⎡

⎢

⎢

⎢

⎢

⎣

𝑏 𝑏2

𝑎 0 0 𝑏
𝑎 0 0 0

0 𝑏 𝑥(3)1 0 𝑦(3)1 𝑦(3)2 0 0
0 𝑏 𝑐 𝑏 0 0 1 0
0 0 𝑏 𝑑 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(4)
←←←←←←←←←→

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑏 𝑏2

𝑎 0 0 𝑏
𝑎 0 0 0

0 𝑏 𝑥(3)1 0 𝑦(3)1 𝑦(3)2 0 0

0 0 𝑏 𝑏2

𝑐−𝑥(3)1

−𝑦(3)1 𝑏

𝑐−𝑥(3)1

−𝑦(3)2 𝑏

𝑐−𝑥(3)1

𝑏
𝑐−𝑥(3)1

0

0 0 𝑏 𝑑 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5)
←←←←←←←←→

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑏 𝑏2

𝑎 0 0 𝑏
𝑎 0 0 0

0 𝑏 𝑥(3)1 0 𝑦(3)1 𝑦(3)2 0 0

0 0 𝑏 𝑏2

𝑐−𝑥(3)1

−𝑦(3)1 𝑏

𝑐−𝑥(3)1

−𝑦(3)2 𝑏

𝑐−𝑥(3)1

𝑏
𝑐−𝑥(3)1

0

0 0 0 1 𝑦1𝑏
𝑞4

𝑦2𝑏
𝑞4

−𝑏
𝑞4

𝑐−𝑥1
𝑞4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Then, �̂�4 =
[

𝑦1𝑏
𝑞4

𝑦2𝑏
𝑞4

−𝑏
𝑞4

𝑐−𝑥1
𝑞4

]

⋅ 𝐘4 where 𝑞4 = 𝑐𝑑 − 𝑥(3)1 𝑑 − 𝑏2.

ote that we directly use the result from the previous iteration in (3),
nd the row operations (4) (5) are the same for each iteration.

For 𝑛 = 5, we would need to store 3rd row of the above echelon
orm of 𝐒4, i.e. 𝑥(4)1 = 𝑏2

𝑐−𝑥(3)1
, 𝑦(4)1 =

−𝑦(3)1 𝑏

𝑐−𝑥(3)1
, 𝑦(4)2 =

−𝑦(3)2 𝑏

𝑐−𝑥(3)1
, 𝑦(4)3 = 𝑏

𝑐−𝑥(3)1
.

Suppose we have compute the echelon form for 𝐒𝑛−1 and store the
(𝑛 − 1)th row as 𝑥(𝑛−1)1 , 𝑦(𝑛−1)1 ,… , 𝑦(𝑛−1)𝑛−3 , Then we have the Gauss-Jordan
elimination for 𝐒𝑛 as:

⎡

⎢

⎢

⎢

⎢

⎣

𝑎 𝑏 … 0 1 0 0 0
⋮ ⋱ ⋱ ⋮ ⋱ ⋱ ⋱ ⋮
0 𝑏 𝑐 𝑏 0 0 1 0
0 0 𝑏 𝑑 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

←←→

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⋮ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

⋯ 𝑏 𝑥(𝑛−1)1 0 𝑦(𝑛−1)1 𝑦(𝑛−1)2 ⋯ 𝑦(𝑛−1)𝑛−3 0 0

⋯ 𝑏 𝑐 𝑏 0 0 0 0 1 0

⋯ 0 𝑏 𝑑 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

←←→

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⋮ ⋱ ⋱ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

⋯ 𝑏 𝑥(𝑛−1)1 0 𝑦(𝑛−1)1 ⋯ 𝑦(𝑛−1)𝑛−3 0 0

⋯ 0 𝑏 𝑏2

𝑐−𝑥(𝑛−1)1

−𝑦(𝑛−3)1 𝑏

𝑐−𝑥(𝑛−1)1

⋯
−𝑦(𝑛−1)𝑛−3 𝑏

𝑐−𝑥(𝑛−1)1

𝑏
𝑐−𝑥(𝑛−1)1

0

⋯ 0 𝑏 𝑑 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

←←→

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⋮ ⋱ ⋱ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

⋯ 𝑏 𝑥(𝑛−1)1 0 𝑦(𝑛−1)1 ⋯ 𝑦(𝑛−1)𝑛−3 0 0

⋯ 0 𝑏 𝑏2

𝑐−𝑥(𝑛−1)1

−𝑦(𝑛−3)1 𝑏

𝑐−𝑥(𝑛−1)1

⋯
−𝑦(𝑛−1)𝑛−3 𝑏

𝑐−𝑥(𝑛−1)1

𝑏
𝑐−𝑥(𝑛−1)1

0

⋯ 0 0 1 𝑦(𝑛−1)1 𝑏
𝑞𝑛

⋯
𝑦(𝑛−1)𝑛−3 𝑏
𝑞𝑛

−𝑏
𝑞𝑛

𝑐−𝑥(𝑛−1)1

𝑞𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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Therefore,

�̂�𝑛 =
[

𝑦(𝑛−1)2 𝑏
𝑞𝑛

⋯
𝑦(𝑛−1)𝑛−3 𝑏

𝑞𝑛
−𝑏
𝑞𝑛

𝑐−𝑥(𝑛−1)1
𝑞𝑛

]

⋅ 𝐘𝑛 (B.2)

where 𝑞𝑛 = 𝑐𝑑 − 𝑥(𝑛−1)1 𝑑 − 𝑏2. Then we store the (𝑛 − 1)th row of the
above echelon form of 𝐒𝑛 for the next iteration.
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