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Abstract
A real-time 3D visualization (RT3DV) system using a multiview RGB camera array is presented. RT3DV can process multi-
ple synchronized video streams to produce a stereo video of a dynamic scene from a chosen view angle. Its design objective 
is to facilitate 3D visualization at the video frame rate with good viewing quality. To facilitate 3D vision, RT3DV estimates 
and updates a surface mesh model formed directly from a set of sparse key points. The 3D coordinates of these key points 
are estimated from matching 2D key points across multiview video streams with the aid of epipolar geometry and trifocal 
tensor. To capture the scene dynamics, 2D key points in individual video streams are tracked between successive frames. 
We implemented a proof of concept RT3DV system tasked to process five synchronous video streams acquired by an RGB 
camera array. It achieves a processing speed of 44 milliseconds per frame and a peak signal to noise ratio (PSNR) of 15.9 
dB from a viewpoint coinciding with a reference view. As a comparison, an image-based MVS algorithm utilizing a dense 
point cloud model and frame by frame feature detection and matching will require 7 seconds to render a frame and yield a 
reference view PSNR of 16.3 dB.

Keywords Real-time 3D reconstruction and rendering · Structure-from-Motion · Multiview feature tracking

1 Introduction

A multiview camera array contains multiple cameras 
mounted on a rigid rig, capturing videos in a synchronous 
manner. By properly arranging camera orientations, one may 

estimate a dynamic 3D model of the foreground objects from 
the component videos and synthesize a new video of stereo 
vision of these objects from a desired view angle. A real-
time 3D visualization (RT3DV) system consisting of a cam-
era array and a processing platform will synthesize the stereo 
video when the camera array is capturing the dynamic scene.

An RT3DV system is very similar to the multi-view 
stereo (MVS) algorithm [1–5] in that a 3D surface model 
will be estimated based on multiple images (video frames). 
However, the primary design objective of current MVS sys-
tems is to accurately reconstruct a 3D surface model of a 
foreground object. As such, a dense point cloud 3D model 
[1–5] often needs to be estimated based on time-consuming 
optimization procedures. Hence, many of the traditional 
MVS pipeline modules may not be cost-effective. RT3DV, 
on the other hand, is developed to output a stereo video from 
a given viewing direction in real-time. A 3D model is needed 
here only to provide depth sensation of a stereo vision from 
a given view orientation.

In developing the RT3DV system, we focus on develop-
ing low complexity 3D surface model estimation and update 
methods such that the resulting algorithm may be executed 
on a commodity computing platform at a video frame rate 
(real-time). The low-complexity 3D surface model contains 
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very few triangular meshes, formed with a sparse set of 3D 
key points. Periodically, the coordinates of these 3D key 
points are estimated from matching 2D key points in tempo-
rally synchronized video frames of multiple video streams 
via epipolar geometry and trifocal tensor. Between suc-
cessive periodic refreshing of 2D key points detection and 
matching, their 2D positions are updated in intermediate 
frames using visual feature tracking. These innovative 3D 
modeling approaches reduce computation time per video 
frame by orders of magnitudes. Given the low-complexity 
3D surface model and a desired view point, a stereo view 
may be rendered by mapping the texture of each triangular 
surface from the corresponding triangle in the closest view. 
Since the objective of RT3DV is 3D visualization, the image 
quality of the rendered video frame will be evaluated rather 
than the accuracy of the 3D coordinates of the 3D surface 
model.

We built a proof-of-concept camera array [6–8] and 
developed the RT3DV algorithm on this platform. In 
Fig. 1(a), five miniature cameras form a camera array acquir-
ing videos synchronously. In Fig. 1(b), three objects used in 
the experiment are displayed. This camera array is mounted 
on the top of a surgical training box, as shown from the side 
in Fig. 1(c). The electronics for transmitting the multiview 
video streams to a close-by laptop are shown in Fig. 1(d). 
For this kind of embedded system application, trade-offs 
between the image quality of rendered 3D stereo video and 
corresponding computation costs become very important.

The technical contribution of the RT3DV system is the 
development of a low-complexity 3D reconstruction algo-
rithm for 3D visualization of dynamic scenes. It does not 
require an expensive depth sensor (e.g., Kinect) and can be 
port to internet of things (IoT) devices.

In the rest of this paper, related works will be reviewed 
in Sect. 2. The RT3DV will be presented in detail in Sect. 3. 
Experiments with acquired multiview videos and results are 
presented in Sect. 4. Discussions and future works are in 
Sect 5.

2  Related Work

2.1  Image‑based 3D Reconstruction

A typical image-based 3D reconstruction is the process of 
rebuilding the 3D shape of the original scene captured by 
multiview images. Existing 3D reconstruction algorithms 
aim to estimate a dense point cloud 3D representation of the 
scene. The objective is to enhance details of the estimated 
3D surface model while conforming to visibility evidence. 
Computation complexity and computing time are of lesser 
concern. In this work, a typical image-based 3D reconstruc-
tion pipeline will be implemented as a baseline algorithm, of 

which the performance will be compared against the RT3DV 
algorithm.

The typical image-based 3D reconstruction pipeline 
consists of 3 steps: (a) 3D dense point cloud estimation, 
(b) 3D surface reconstruction, and (c) texture mapping. 
Before applying these three steps, a set of feature points 
(keypoints) will be detected at each view (image) using a 
feature detection algorithm such as SIFT [9], FAST [10], 
or SURF [11], etc. Then, a feature matching algorithm and 
RANSAC will be applied to jointly calibrate the camera 
intrinsic parameters as well as camera extrinsic parame-
ters relative to a reference world coordinate. The baseline 
image-based 3D reconstruction pipeline is summarized in 
Fig. 2.

2.1.1  Multiview Stereo (3D Dense Point Cloud 
Reconstruction)

Furukawa et al. [1] proposed a point-growing multiview 
stereo algorithm (PMVS) that iteratively grows the point 
cloud by adding new feature points according to the epipolar 
geometry while not violating visibility constraints. Bleyer 
et al. [12] introduced the PatchMatch algorithm [13, 14] 
for stereo matching. Initially, each pixel is assigned to a 
3D plane randomly. A good plane that reduces a cost func-
tion will be propagated diagonally to neighboring pixels in 
an iterative manner. This PatchMatch algorithm has been 
adopted and extended in other works [2–5, 15]. Shen [15] 
employs PatchMatch stereo [12] for multiview reconstruc-
tion to generate a depth map for each image and imposes 
depth consistency over neighboring images. Based on the 
PatchMatch propagation scheme, Zheng et al. [5] propose a 
probabilistic graphical model for jointly view selection and 
depth estimation for each pixel without considering slanted 
3D planes. Galliani et al. develop Gipuma [2] in which 
they use a diffusion-like propagation scheme to efficiently 
propagate good planes to half the amount of pixels at once, 
which utilizes the parallel computation of Graphic Process 
Unit (GPU). Xu et al. [4] adopt an asymmetric checkerboard 
propagation scheme based on the confidence of current 
neighbor hypotheses and jointly selects a subset of views 
for cost aggregation.

2.1.2  3D Surface Reconstruction from Dense Point Clouds

When the dense point cloud is estimated using the Patch-
Match method [16], the surface reconstruction problem 
may be posed as an energy minimization problem using 
the Delaunay triangulation. The energy cost function 
measures the agreement of inside/outside labeling of 
Delaunay tetrahedra based on the visibility constraints. 
A globally optimal tetrahedra labeling can be obtained by 
solving a graph S-T minimum cut problem. The method 
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described in [16], however, assumes a strong geometrical 
prior and may fail for weakly-supported surfaces well. 
Improvements were proposed in [17] and [18] which 
yield a more complete 3D surface at additional compu-
tation cost.

2.1.3  Texture Mapping

Texture mapping [19–21] is the process of painting the 
triangular surface mesh with realistic color, texture, 
and shade using images acquired from one or more 

Figure 1  (a) Micro-camera 
Array used to collect data (b) 
(c) Objects to reconstruct are 
placed in a Fundamentals of 
Laparoscopic Surgery (FLS) 
laparoscope trainer box while 
the camera array is recording. 
(d) Each Pi camera is connected 
to a Raspberry Pi.

(a) (b)

(c)

(d)
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appropriated cameras. The selection of camera(s) for 
texture mapping is formulated as a multi-label Markov 
random filed energy optimization problem. Each 3D tri-
angular mesh will be assigned to a close-by view so that 
its appearance can be warped from a triangular area in the 
video frame with matching vertices. In [20], the selection 
criterion is to align the surface normal of the triangular 
mesh to the optical axis of the view. A global color adjust-
ment and a local Poisson editing are applied to minimize 
the seam line along the boundary of the triangular mesh. 
In [19], instead of one view (camera), the corresponding 
2D triangular regions in multiple views (cameras) are col-
lected and blended to yield the final texture of the mesh. It 
reduces the blurring and ghosting artifacts due to blend-
ing but cannot mitigate texture bleeding due to geometric 
registration error and camera calibration error. In [21], 
post-processing efforts are introduced to ensure color con-
sistency and geometry consistency of textures in adjacent 
surface meshes.

2.2  Free‑Viewpoint Video

Free-viewpoint video (FVV), a.k.a 4D video [22, 23] refers 
to a 3D video service that allows viewers to choose their 
preferred viewing angles freely. A 4D video, represented by 
a 3D surface model, associated texture maps, and the evolu-
tion of this 3D model over time (hence 4D), is generated to 
achieve this goal.

The MVS algorithm is the basis of FVV for developing 
and updating the 3D surface model. In [24], an initial dense 
correspondence is established to compute depth for each 
pixel. The estimations of depths are then filtered and used 
to refine the correspondence estimation in turn. Rendering 
from a given view angle is performed using both refined 
depths and updated correspondence. In [25] and [26], the 
shapes and the segmentation of dynamic objects are jointly 
computed and optimized. Many of the existing efforts focus 
on encoding and transmitting FVV streams, assuming the 
models have been obtained offline. The online acquisition 
of FVV has yet to be explored in depth. RT3DV developed 
in this work is perhaps the first effort to generate free-
viewpoint video in real-time.

2.3  Real‑time 3D Reconstruction with RGB‑D 
Camera

A real-time template-based reconstruction method of 
dynamic scenes is demonstrated in [21], in which an 
online template was deformed to fit the depth data from 
an RGB-D camera. The template is non-rigidly tracked 
to provide a detail layer to account for high-frequency 
details. However, a rigid template must be captured at the 
beginning [21]. DynamicFusion [27] is the pioneering 
work for real-time and template-free 3D reconstruction of 
dynamic scenes using RGB-D cameras, where a canoni-
cal reference model is updated incrementally by unwarp-
ing depth measurements returned with a single RGB-D 
camera at a real-time rate. Several follow-ups improved 
the quality of reconstruction via additional constraints. 
For example, VolumeDeform [28] combines depth corre-
spondences with robust sparse correspondences (SIFT) to 
avoid drift. Fusion4D [29] extend [27, 28] to a multiview 
scenario in which 8 RGB-D cameras capture depth data 
simultaneously, and multiple GPUs are used to compute 
the deformation field and the fusion of all data frame. 
However, the examples shown in [27–29] are limited to 
the reconstructed scene only undergoing slow motion and 
minor topological changes.

KillingFusion [30] estimates a dense deformation 
field in the TSDF space constrained by a damped Kill-
ing motion via a variational formulation, capturing more 
free movements. SobolevFusion [31] proposes to use 
Sobolev gradient flow to compute the deformation field 
and determine the voxel correspondences by matching 
the low-dimensional signatures of their Laplacian eigen-
functions, allowing large motion and topological changes 
of the scene. The recent work [32] uses the dual back 
RGB cameras of a VR device to achieve real-time 3D 
rendering. In [32], a video encoder is used to find a sparse 
70 × 70 depthmap by block matching over a pair of recti-
fied images, and then a fast Laplacian solver is used to 
smooth the depthmap. These methods all take in as input 
the depthmaps return by RGB-D cameras at a real-time 
rate. In our work, we tackle the problem of real-time 3D 
rendering using multiview RGB cameras, where depth 
information is derived from pure RGB images.

Mul� View Images Mul�view Stereo[8] Surface Reconstruc�on[35] Textured meshes[38]
Dense point cloud 3D meshes Textured meshes

Structure-from-Mo�on[18]
Sparse point cloud and Camera poses

Figure 2  Baseline image-based 3D reconstruction pipeline.
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Table 1 summarizes the related 3D reconstruction algo-
rithms and their characteristics compared to the RT3DV 
pipeline.

3  The RT3DV Algorithm

3.1  Overview

The inputs to the RT3DV algorithm are video streams 
acquired synchronously by cameras on a camera array. The 
outputs are a 3D surface model consisting of connected tri-
angular meshes and a texture map (color, texture, and shade) 
for each triangular mesh. These outputs will be forwarded to 
a 3D rendering engine (Unity [33] in this work) to display a 
stereopsis video from given viewpoints. The RT3DV algo-
rithm performs the following tasks for each video frame: (a) 
identifying 2D distinct feature points at each view (camera), 
(b) establishing correspondence of 2D feature points across 
all pairs of views, (c) estimating the 3D world coordinate of 
corresponding 2D feature points, (d) applying the Delaunay 
graph cut algorithm [34] to reconstruct the 3D triangular 
mesh surface model using the estimated 3D feature points 
as its vertices, and (e) estimating corresponding appearance 
map (texture, color, shade) for each triangle surface pigment.

When the algorithm is initiated (initiation mode), the 
cameras need to be calibrated to estimate their intrinsic 
parameters (focal length, pixel scaling, etc.) and extrin-
sic parameters (positions and poses). If the camera array 
remains stationary throughout the video, the camera param-
eters will be assumed available, and the initiation mode will 
not be executed anymore. Once the cameras are calibrated, 
the RT3DV algorithm will be executed in either a feature 
detection mode or a feature tracking mode. In the feature 
detection mode, 2D feature points will be detected at each 
camera’s current frame. In the feature tracking mode, exist-
ing 2D features from the previous frame will be tracked. 
Leveraging the temporal correlations between successive 
video frames, the feature detection mode will be executed 
periodically with the feature tracking mode executed in 
between. The pipeline and block diagram of RT3DV are 
shown in Fig. 3.

3.2  Initiation

To initiate the RT3DV algorithm, camera calibration will 
be performed. An incremental structure from motion (iSfM) 
algorithm [35–38] will be applied to jointly estimate the 
camera intrinsic and extrinsic parameters and 3D coordi-
nates of feature points.

First, the speeded-up robust feature (SURF) [11] detec-
tion algorithm is applied to the first video frames of all 
cameras to detect local features. Each detected local fea-
ture is represented by its 2D image coordinate within the 
video frame and a feature descriptor characterizing its local 
appearance. A fast matching algorithm FLANN [39] will 
then be applied to find figures across neighboring views 
having similar feature descriptors (appearance consist-
ency). This appearance-based matching results will be veri-
fied using the epipolar geometry constraints. The RANSAC 
[40] algorithm will be applied to select a subset of matching 
2D feature points of two views to estimate the correspond-
ing fundamental matrix [41]. If the majority of remaining 
2D feature points of both views also meet the epipolar con-
straints with the estimated fundamental matrix, the relative 
positions (extrinsic parameters) between this pair of cam-
eras then may be determined. Matching 2D feature points 
that fail this geometric consistency check will be deemed 
as outliers and discarded. Based on the estimated positions 
and poses of cameras, 3D coordinates of the matching 2D 
feature points may be determined. Given these estimated 3D 
coordinates, one may proceed to refine the camera calibra-
tion. And then, the 3D coordinates will be refined further. 
This iterative Bundle Adjustment [42] process will converge 
as no further changes are observed. The iSfM repeats the 
above steps for one camera at a time until all cameras are 
processed. On completion of iSfM, the calibrated camera 
parameters and estimated 3D coordinates of feature points 
will be made available for subsequent frames.

3.3  Fast Reconstruction with Feature Tracking

Given the calibrated camera parameters, the set of match-
ing 2D feature points, and corresponding 3D coordinates, 
one may leverage the temporal correlation of videos to 

Table 1  Summary of related 3D reconstruction and rendering algorithms.

Algorithm Input Stationary 
cameras

Dynamic 
Scene

Hardware Real-time Output

Multi-view Stereo(MVS) [1–5, 15] Multi-view images
√

× RGB cameras × Dense point cloud
Free-Viewpoint Video(FVV) [22–26] Multi-view videos ×

√

RGB Cameras × Rendered videos
Volumetric Methods based on RGB-D 

cameras [27–31]
Depthmaps

√ √

RGB-D camera
√

3D Volumetric Surface

RT3DV(ours) Multi-view videos
√ √

RGB camera
√

Rendered videos
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update the 2D feature positions using feature tracking 
instead of the time-consuming feature detection.

The Kanade–Lucas–Tomasi (KLT) feature tracker [43] 
will be used to track local movement of an existing 2D fea-
ture available from the previous frame. The outcome will 
further be refined by applying a block matching algorithm 
using the Sum of Absolute Differences (SAD) similarity 
metric.

where Ep,Ec denote the previous and current frame and 
N denotes a template window in a feature point’s local 
neighborhood.

Since only existing 2D feature points from the previous 
frame are tracked, the feature correspondence relationship 

(1)SAD(k, l) =
∑

(i,j)∈N

|Ep(i, j) − Ec(i + k, j + l)|

will remain unchanged unless a 2D feature disappears (can-
not be tracked) due to dynamic scene change, in which case 
the track will be discarded. If a matching 2D feature point 
changes its position after tracking, its corresponding 3D 
coordinates will also be updated by triangulation using the 
stander DLT method for [41]. Otherwise, the previously 
estimated 3D coordinates will remain unchanged. This on-
demand update strategy saves lots of computation when 
only a small fraction of feature points move between suc-
cessive frames.

3.4  Fast Reconstruction based on Feature Detection

Feature tracking will capture movements of existing fea-
tures in a dynamic scene. It does not, however, detects 
the presence of new features. Thus feature detection will 

Figure 3  Block diagram of the 
proposed pipeline RT3DV.

Camera 
Calibra�on

New feature 
detec�on

Delaunay surface 
reconstruc�on

Texture Mapping

Rendering Engine

Calibration Tracking

Yes

Yes

No

No

Incoming Frames

Triangula�on[25]

KLT Tracking[15][16]Feature Detec�on[22]

Epipolar Geometry 
Aided Matching

Triangula�on[25]

Detection

Trifocal Tensor Track 
Filtering

Refinement

CPU 
GPU

Structured-from-
Mo�on[18]
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be performed periodically in the RT3DV algorithm. The 
period between two feature detection frames depends on 
prior knowledge of the dynamics of the scene and can be 
adjusted. We assume that the camera calibration param-
eters are available. Therefore, after new feature detection 
is performed, the robust feature matching process can be 
accelerated by enforcing the epipolar geometry [41] and 
aided by trifocal tensor [41]. Specifically, with calibrated 
cameras, the essential matrix � between any two cameras 
in the camera array is available. If a 2D feature point � 
in the video frame of one camera and another 2D feature 
point �′ in the video frame of another camera correspond 
to the same 3D point, then

where � = �� is the epipolar line.
Instead of using Eq. (2) to verify the matches, we only 

retain the matches if the corresponding point is within 
3 pixels from the epipolar line. This verification proce-
dure only takes constant operations for each match, and 
thus the complexity is O(Nm) , where Nm is the number of 
initial matches returned by FLANN. Then, we build fea-
ture tracks (2D feature correspondences across all views) 
from the remaining matches. The above procedure is called 
epipolar-geometry-aided matching. These tracks are then 
further refined by trifocal tensors.

Since all camera poses are available, we can quickly 
calculate the epipolar line for each 2D feature. A simple 
extension of epipolar geometry can help us find outliers: 
given a pair of matched points (�1, �2) , the third corre-
sponding point �3 must pass both epipolar lines �

13
 and 

�
23

 , where

In principle, we can determine �3 by intersecting �13 and �23:

However, this approach fails when �13 and �23 are paral-
lel and will be inaccurate if they are nearly colinear. This 
happens if the 3D point � lies on or near the trifocal plane 
defined by the three camera centers.

The degeneracy of the epipolar method can be avoided 
by using the trifocal tensor in three views which is analo-
gous to fundamental matrix in two [41] views. The idea 
is to construct a homograpy by finding a plane defined by 
the back-projection of a line in the second view using the 
trifocal tensor. The homography and �3 are [41],

(2)�
�T
�� = �

�T
� = 0

(3)�13 = �
−T
3
�̂13�13�

−1
�1

(4)�23 = �
−T
3
�̂23�23�

−1
2

�3

(5)�3 = �13 × �23

where �1 = (x1
1
, x2

1
, x3

1
) , �3 = (x1

3
, x2

3
, x3

3
) , the line in the sec-

ond view is �2 = (l1
2
, l2
2
, l3
2
) , and Ti

jk = ai
jbk

4
− a

4

jbk
i
 is the tri-

focal tensor, and aj
i
, b

j

i
 are the (i, j) element of the camera 

projection matrices �2 and �3 for the second and third view. 
A good chioce for �2 is the line that is through �2 and per-
pendiculat to the epipolar line. A comparison of accuracy 
for the epopolar method and the trifocal tensor method is 
shown in Fig. 4.

We couple the above procedure with RANSAC to fil-
ter outliers in a track and find the largest support set of 
corresponding points. Because each view has at most five 
elements (thus ten pairs possible), we can quickly iterate 
the ten possible pairs for each track. Once the outliers are 
filtered out, the stander DLT method [41] is used to triangu-
late for the 3D position for each track. As shown in Fig. 5, a 
better rendering result is achieved with the proposed trifocal 
tensor fitlering procedure. More discussion about Fig. 5 can 
be found in Experiment and Discussion section.

The Trifocal-Tensor-based Track Filtering is summarized 
as follow:

(6)hk
i
= l

j

2
T

jk

i

(7)xk
3
=

3
∑

i=1

3
∑

j=1

hk
i
xi
1

Figure 4  (a) A feature point is shown in the first view. (b) The cor-
responding point in the second view. (c) The corresponding point in 
the third view can be found by intersecting two epipolar lines or trifo-
cal tensor. The epipolar method is prone to error while trifocal ten-
sor method is more robust. (d) Average transfer errors for the epipolar 
method and trifocal tensor method over DTU dataset. Gaussian noise 
with different standard deviation values are added to the correspond-
ing image points.
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3.5  Surface Reconstruction and Texture Mapping

Once we have an accurate point cloud, the next step is to 
reconstruct a 3D surface model out of it. The desired surface 
reconstruction algorithm should not only work well with the 
sparse nature of our reconstructed point cloud but also be very 
computationally efficient to satisfy the real-time requirement. 
We use the Delaunay graph cut algorithm by Labatut et al. [34] 
because it is fast and robust to changes in point density, which 
helps to reconstruct difficult surface parts. In their work, they 
also showed that their approach is very robust against outliers.

Once we obtain the 3D surfaces, each surface is pro-
jected to all views that observe it. If the 3D surface is 
viewable by multiple views, we retrieve the texture from 
the view whose viewing angle is smallest with the normal 
of the 3D surface:

where �C is the viewing angle of view C, and n is the normal 
of the 3D surface.

4  Experiment and Discussion

4.1  Setup and Protocol

4.1.1  Hardware and Software Platform

We evaluate the proposed RT3DV algorithm using the 
hardware platform shown in Fig. 1. Five synchronous video 

(8)argmin
C

⟨�C, �⟩

Figure  5  Rendering result. (a) rendered view without trifocal ten-
sor filtering (b) with trifocal tensor filtering (c) the ground truth (d) 
Structural similarity (SSIM) index for rendering result with and with-
out trifocal tensor filtering.

Original Le� Front Right

Figure  6  Virtual views using textured 3D surfaces for the objects 
Owl, Post Office, and Mushroom at a given frame. The virtual view is 
generated by 3D rendering engine. The 1st, 2nd, 3rd columns are the 
left, front, and right virtual view. The 1st row is the result generated 
by the baseline pipeline, which takes around 5 s. The 2nd row is the 
result of the proposed pipeline, which takes around 42 ms on average.

Table 2  Timing for baseline pipeline.

Objects Dense [2] Surface Texture Total

Mushroom 1.4 s 1.2 s 1.4 s 4.0 s
Post Office 1.3 s 2.0 s 2.1 s 5.4 s
Owl 1.4 s 1.9 s 2.4 s 5.7 s
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streams are acquired from five micro-cameras (dark squares 
in Fig. 1(a)) simultaneously. The displacements between 
cameras are around 5 cm, as shown in Fig. 1(a). The camera 
array assembly is mounted on the top of an FLC laparoscope 
trainer box. The objects are placed at the bottom of the box 
and will be moved manually during the video capture to 
emulate a dynamic scene.

This platform is a prototype 3D visualization system 
developed to enhance the visualization of traditional lapa-
roscope [6–8]. Each camera has a resolution of 640 × 480 
pixels and has a frame rate of 30 frames per second (fps). 
Each camera is attached to a Raspberry Pi video captur-
ing board, which compresses the video into Mpeg-4 format. 
The compressed video is then transmitted through Ethernet 
cables to a desktop PC to be processed. The PC is equipped 
with an 8-core 4.00 Hz i7-6770k CPU, a GeForce GTX 2080 
Ti GPU, 16 GB main memory running Ubuntu 16.04 operat-
ing system.

For the baseline pipeline, we used the C++ implementa-
tion as SfM [35]. We chose the Cuda implementation of 
MVS [2]. The surface reconstruction [34] is implemented 
in C++ by [36]. RT3DV is implemented in C++ using 
OpenCV with CUDA 9 enabled, where SURF [11] and 
FLANN [39] matching run in GPU.

4.1.2  Data Sets

We generated three sets of multiview video streams, one 
for each object, using the experiment platform described 
above. Besides, we perform the same experiment on the pub-
lic available DTU MVS dataset [44], where underlying point 
clouds, the camera poses, and the images for each camera are 
all available. Since the objects are stationary, we first trans-
late the underlying point cloud and then back-project it to all 
cameras to generate the multiview videos of moving objects.

4.1.3  Protocols

We ran the baseline pipeline and RT3DV on all the mul-
tiview video frames in both datasets. We chose the run-
ning time to be the time interval between the completion 
of texture mapping between the successive frames. For the 
baseline pipeline, we excluded SfM and only measured the 
running time between the end of SfM to the end of tex-
ture mapping because SfM is only performed once as the 
initiation step in RT3DV. The processing time per frame 
is the average running time of all successive frames for 
each video. We conducted three trials of the experiment 
and reported the average processing time per frame of the 
three trials.

4.2  Results

4.2.1  Timing

For the three multiview videos collected in the FLC 
laparoscope trainer box, we remove the tracked features 
whose error is greater than five and triangulate the rest. 
The algorithm is set to re-detect features per 10 frames. 
The running time is related to the number of feature points 
being processed. With a large number of features, the pro-
cessing time for tracking, epipolar-geometry-aided match-
ing, and trifocal-tensor-based track filtering and surface 
reconstruction can worsen.The baseline pipeline tries to 
find the dense feature point cloud. However, for scenes 
that have few feature points, it fails to compute the scene 
geometry, which introduces holes in the reconstruction, 
as shown in the last row of Fig. 6. The timing for RT3DV 
and the baseline pipeline are summarized in Tables 2 and 
3. The number of feature points and 3D triangles can be 
found in Table 4.

Table 3  Timing for RT3DV. 
Feature detection is performed 
every 10 frames.

Objects Detect KLT Tri Surface Texture Avg

Mushroom 66 ms 9 ms 10 ms 10 ms 13ms 43 ms
Post Office 57 ms 8 ms 9 ms 8ms 11ms 38 ms
Owl 63 ms 10 ms 11 ms 10 ms 12 ms 45 ms

Table 4  Comparison of number 
of features and triangles and 
PSNR.

Features Triangles PNSR

Baseline Ours Baseline Ours Baseline Ours

Mushroom 14733 370 29418 715 14.9 dB 14.4 dB
Post Office 15710 281 31383 585 17.1 dB 16.1 dB
Owl 17637 303 35240 622 16.9 dB 16.0 dB
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4.2.2  Quality Metric and Evaluation

A key result of this work is that the visual quality of ren-
dered images using a sparse point cloud is comparable to 
that using a dense point cloud. To facilitate objective vis-
ual quality evaluation, we adopt a protocol similar to the 
leave one out cross-validation method: we render a view at 
a viewing angle that coincides with one of the cameras and 
compute the peak signal to noise ratio (PSNR) between the 
rendered video frame and the acquired video frame (ground 
truth) without using any video frames from that validation 
camera.

Figure 7 shows the original image and the rendered view 
generated by our method and the baseline pipeline. In our 
experiment, we track feature points for ten frames and re-
detect new feature points. Figure 8 shows the tracking result 
of our method as opposed to the classic pipeline. The aver-
aged PSNR of Fig. 8 is recorded Table 4. The experiment 
is repeated with and without the epipolar geometry aided 
matching and the proposed trifocal tensor based filtering 
procedure. The rendered view and the structural similarity 
(SSIM) are computed and shown in Fig. 5. A qualitatively 

and quantitatively better result is obtained with the proposed 
matching and filtering procedure.

For the DTU dataset, the camera configurations are 
shown in Fig. 9. We test the baseline pipeline and RT3DV 
on four objects (object 1, 5, 6, 45) for six camera configura-
tions (Green, Blue, Red, Cyan, Magenta, Yellow), as shown 
in Fig. 9. For each camera configuration, we reconstruct the 
image of the center view and computer the PSNRs with the 
original image using RT3DV and the baseline pipeline. 
Figure 10 shows the generated view. Table 5 and Fig. 11 
show the PNSR and averaged processing time of our pipe-
line and the baseline pipeline, from which we see that the 
results of RT3DV and the baseline pipeline have similar 
PSNR but RT3DV is orders of magnitude faster than the 
baseline.

5  Discussion

Number of features and processing time. The processing 
time of the proposed pipeline heavily relies on the accuracy 
and the number of feature points extracted from the scene. 

Original RTMVS Baseline

Figure  7  Rendered view to an original view using depthmaps only. 
Images in the 1st column are original images. The 2nd column are gen-
erated by RT3DV. The 3rd column are generated by the Patchmatch-
based MVS implemented by Galliani et al. [2].

Figure 8  From left to right are the rendered view for the moving objects. The 1st row are the results of the baseline pipeline which takes more 
than 5s per frame. The 2nd row are the rendered results for RT3DV that takes 44ms per frame on average.

Figure 9  Camera configuration for computing PNSR for virtual view. 
Each camera configuration has five cameras. We reconstruct the mid-
dle view and compute the PSNRs with the real image of the middle 
view using RT3DV and the baseline pipeline. Config 1-6 correspond 
to camera group of Green, Blue, Red, Cyan, Magenta, Yellow.
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Our virtual view is generated by rendering the 3D model 
computed by the sparse point cloud. If the number of points 
in the point cloud is too few, the point cloud will not capture 
the 3D geometry of the scene well. On the other hand, if 
the number of features is too large with similar accuracy, 
the reconstruction would take too long to complete, as the 
number of features has a direct relation to each stage of the 
pipeline. In our experiment of the laparoscope training box, 

the number of features is between 280 to 400, and the aver-
ages reconstruction time per frame is around 42 ms.

Stationary camera poses. The proposed pipeline assumes 
the relative camera poses are stationary. If the relative cam-
era poses have changed, then we need to calibrate the cam-
eras, which can be done by running SfM from scratch.

Original Baseline RTMVS Original Baseline RTMVS Original Baseline RTMVS
Group 1 Group 2 Group 3

Group 4 Group 5 Group 6

Group 1 Group 2 Group 3

Group 4 Group 5 Group 6

Group 1 Group 2 Group 3

Group 4 Group 5 Group 6

Config 1 Config 2 Config 3

Config 4 Config 5 Config 6

Figure 10  Generated virtual center views for object 1, object 5, object 6, object 45 (in order) of the DTU dataset [44] by baseline pipeline and 
RT3DV.

339Journal of Signal Processing Systems (2022) 94:329–343



1 3

6  Conclusion

In this work, we propose RT3DV for near-field scenes. The 
proposed algorithm utilizes the temporal and spatial correla-
tion of multiview videos and is faster than the state-of-the-
art pipeline in order of magnitude. While the state-of-the-art 
pipeline reconstructs fine details on parts of the scene, it 
introduces holes on the part that has fewer features. Our effi-
cient and straightforward pipeline can preserve the integrity 
of the scene and provide an adequate visualization result.
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