
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11265-021-01729-0

Towards Real‑time 3D Visualization with Multiview RGB Camera Array

Jianwei Ke1 · Alex J Watras1 · Jae‑Jun Kim1 · Hewei Liu1 · Hongrui Jiang1 · Yu Hen Hu1

Received: 1 June 2021 / Revised: 1 June 2021 / Accepted: 1 December 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
A real-time 3D visualization (RT3DV) system using a multiview RGB camera array is presented. RT3DV can process multi-
ple synchronized video streams to produce a stereo video of a dynamic scene from a chosen view angle. Its design objective
is to facilitate 3D visualization at the video frame rate with good viewing quality. To facilitate 3D vision, RT3DV estimates
and updates a surface mesh model formed directly from a set of sparse key points. The 3D coordinates of these key points
are estimated from matching 2D key points across multiview video streams with the aid of epipolar geometry and trifocal
tensor. To capture the scene dynamics, 2D key points in individual video streams are tracked between successive frames.
We implemented a proof of concept RT3DV system tasked to process five synchronous video streams acquired by an RGB
camera array. It achieves a processing speed of 44 milliseconds per frame and a peak signal to noise ratio (PSNR) of 15.9
dB from a viewpoint coinciding with a reference view. As a comparison, an image-based MVS algorithm utilizing a dense
point cloud model and frame by frame feature detection and matching will require 7 seconds to render a frame and yield a
reference view PSNR of 16.3 dB.

Keywords Real-time 3D reconstruction and rendering · Structure-from-Motion · Multiview feature tracking

1 Introduction

A multiview camera array contains multiple cameras
mounted on a rigid rig, capturing videos in a synchronous
manner. By properly arranging camera orientations, one may

estimate a dynamic 3D model of the foreground objects from
the component videos and synthesize a new video of stereo
vision of these objects from a desired view angle. A real-
time 3D visualization (RT3DV) system consisting of a cam-
era array and a processing platform will synthesize the stereo
video when the camera array is capturing the dynamic scene.

An RT3DV system is very similar to the multi-view
stereo (MVS) algorithm [1–5] in that a 3D surface model
will be estimated based on multiple images (video frames).
However, the primary design objective of current MVS sys-
tems is to accurately reconstruct a 3D surface model of a
foreground object. As such, a dense point cloud 3D model
[1–5] often needs to be estimated based on time-consuming
optimization procedures. Hence, many of the traditional
MVS pipeline modules may not be cost-effective. RT3DV,
on the other hand, is developed to output a stereo video from
a given viewing direction in real-time. A 3D model is needed
here only to provide depth sensation of a stereo vision from
a given view orientation.

In developing the RT3DV system, we focus on develop-
ing low complexity 3D surface model estimation and update
methods such that the resulting algorithm may be executed
on a commodity computing platform at a video frame rate
(real-time). The low-complexity 3D surface model contains

This work was supported by the National Institute of Biomedical
Imaging and Bioengineering (NIBIB) of the US National Institutes
of Health (NIH) under award number R01EB019460.

 * Jianwei Ke
 jke9@wisc.edu

 Alex J Watras
 watras@wisc.edu

 Jae-Jun Kim
 JKIM207@mgh.harvard.edu

 Hewei Liu
 hliu265@wisc.edu

 Hongrui Jiang
 hongrui@engr.wisc.edu

 Yu Hen Hu
 yhhu@wisc.edu

1 The Department of Electrical and Computer Engineering,
University of Wisconsin-Madison, 1415 Engineering Drive,
Madison WI 53706, USA

/ Published online: 27 January 2022

Journal of Signal Processing Systems (2022) 94:329–343

http://orcid.org/0000-0002-4086-9312
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-021-01729-0&domain=pdf

1 3

very few triangular meshes, formed with a sparse set of 3D
key points. Periodically, the coordinates of these 3D key
points are estimated from matching 2D key points in tempo-
rally synchronized video frames of multiple video streams
via epipolar geometry and trifocal tensor. Between suc-
cessive periodic refreshing of 2D key points detection and
matching, their 2D positions are updated in intermediate
frames using visual feature tracking. These innovative 3D
modeling approaches reduce computation time per video
frame by orders of magnitudes. Given the low-complexity
3D surface model and a desired view point, a stereo view
may be rendered by mapping the texture of each triangular
surface from the corresponding triangle in the closest view.
Since the objective of RT3DV is 3D visualization, the image
quality of the rendered video frame will be evaluated rather
than the accuracy of the 3D coordinates of the 3D surface
model.

We built a proof-of-concept camera array [6–8] and
developed the RT3DV algorithm on this platform. In
Fig. 1(a), five miniature cameras form a camera array acquir-
ing videos synchronously. In Fig. 1(b), three objects used in
the experiment are displayed. This camera array is mounted
on the top of a surgical training box, as shown from the side
in Fig. 1(c). The electronics for transmitting the multiview
video streams to a close-by laptop are shown in Fig. 1(d).
For this kind of embedded system application, trade-offs
between the image quality of rendered 3D stereo video and
corresponding computation costs become very important.

The technical contribution of the RT3DV system is the
development of a low-complexity 3D reconstruction algo-
rithm for 3D visualization of dynamic scenes. It does not
require an expensive depth sensor (e.g., Kinect) and can be
port to internet of things (IoT) devices.

In the rest of this paper, related works will be reviewed
in Sect. 2. The RT3DV will be presented in detail in Sect. 3.
Experiments with acquired multiview videos and results are
presented in Sect. 4. Discussions and future works are in
Sect 5.

2 Related Work

2.1 Image‑based 3D Reconstruction

A typical image-based 3D reconstruction is the process of
rebuilding the 3D shape of the original scene captured by
multiview images. Existing 3D reconstruction algorithms
aim to estimate a dense point cloud 3D representation of the
scene. The objective is to enhance details of the estimated
3D surface model while conforming to visibility evidence.
Computation complexity and computing time are of lesser
concern. In this work, a typical image-based 3D reconstruc-
tion pipeline will be implemented as a baseline algorithm, of

which the performance will be compared against the RT3DV
algorithm.

The typical image-based 3D reconstruction pipeline
consists of 3 steps: (a) 3D dense point cloud estimation,
(b) 3D surface reconstruction, and (c) texture mapping.
Before applying these three steps, a set of feature points
(keypoints) will be detected at each view (image) using a
feature detection algorithm such as SIFT [9], FAST [10],
or SURF [11], etc. Then, a feature matching algorithm and
RANSAC will be applied to jointly calibrate the camera
intrinsic parameters as well as camera extrinsic parame-
ters relative to a reference world coordinate. The baseline
image-based 3D reconstruction pipeline is summarized in
Fig. 2.

2.1.1 Multiview Stereo (3D Dense Point Cloud
Reconstruction)

Furukawa et al. [1] proposed a point-growing multiview
stereo algorithm (PMVS) that iteratively grows the point
cloud by adding new feature points according to the epipolar
geometry while not violating visibility constraints. Bleyer
et al. [12] introduced the PatchMatch algorithm [13, 14]
for stereo matching. Initially, each pixel is assigned to a
3D plane randomly. A good plane that reduces a cost func-
tion will be propagated diagonally to neighboring pixels in
an iterative manner. This PatchMatch algorithm has been
adopted and extended in other works [2–5, 15]. Shen [15]
employs PatchMatch stereo [12] for multiview reconstruc-
tion to generate a depth map for each image and imposes
depth consistency over neighboring images. Based on the
PatchMatch propagation scheme, Zheng et al. [5] propose a
probabilistic graphical model for jointly view selection and
depth estimation for each pixel without considering slanted
3D planes. Galliani et al. develop Gipuma [2] in which
they use a diffusion-like propagation scheme to efficiently
propagate good planes to half the amount of pixels at once,
which utilizes the parallel computation of Graphic Process
Unit (GPU). Xu et al. [4] adopt an asymmetric checkerboard
propagation scheme based on the confidence of current
neighbor hypotheses and jointly selects a subset of views
for cost aggregation.

2.1.2 3D Surface Reconstruction from Dense Point Clouds

When the dense point cloud is estimated using the Patch-
Match method [16], the surface reconstruction problem
may be posed as an energy minimization problem using
the Delaunay triangulation. The energy cost function
measures the agreement of inside/outside labeling of
Delaunay tetrahedra based on the visibility constraints.
A globally optimal tetrahedra labeling can be obtained by
solving a graph S-T minimum cut problem. The method

330 Journal of Signal Processing Systems (2022) 94:329–343

1 3

described in [16], however, assumes a strong geometrical
prior and may fail for weakly-supported surfaces well.
Improvements were proposed in [17] and [18] which
yield a more complete 3D surface at additional compu-
tation cost.

2.1.3 Texture Mapping

Texture mapping [19–21] is the process of painting the
triangular surface mesh with realistic color, texture,
and shade using images acquired from one or more

Figure 1 (a) Micro-camera
Array used to collect data (b)
(c) Objects to reconstruct are
placed in a Fundamentals of
Laparoscopic Surgery (FLS)
laparoscope trainer box while
the camera array is recording.
(d) Each Pi camera is connected
to a Raspberry Pi.

(a) (b)

(c)

(d)

331Journal of Signal Processing Systems (2022) 94:329–343

1 3

appropriated cameras. The selection of camera(s) for
texture mapping is formulated as a multi-label Markov
random filed energy optimization problem. Each 3D tri-
angular mesh will be assigned to a close-by view so that
its appearance can be warped from a triangular area in the
video frame with matching vertices. In [20], the selection
criterion is to align the surface normal of the triangular
mesh to the optical axis of the view. A global color adjust-
ment and a local Poisson editing are applied to minimize
the seam line along the boundary of the triangular mesh.
In [19], instead of one view (camera), the corresponding
2D triangular regions in multiple views (cameras) are col-
lected and blended to yield the final texture of the mesh. It
reduces the blurring and ghosting artifacts due to blend-
ing but cannot mitigate texture bleeding due to geometric
registration error and camera calibration error. In [21],
post-processing efforts are introduced to ensure color con-
sistency and geometry consistency of textures in adjacent
surface meshes.

2.2 Free‑Viewpoint Video

Free-viewpoint video (FVV), a.k.a 4D video [22, 23] refers
to a 3D video service that allows viewers to choose their
preferred viewing angles freely. A 4D video, represented by
a 3D surface model, associated texture maps, and the evolu-
tion of this 3D model over time (hence 4D), is generated to
achieve this goal.

The MVS algorithm is the basis of FVV for developing
and updating the 3D surface model. In [24], an initial dense
correspondence is established to compute depth for each
pixel. The estimations of depths are then filtered and used
to refine the correspondence estimation in turn. Rendering
from a given view angle is performed using both refined
depths and updated correspondence. In [25] and [26], the
shapes and the segmentation of dynamic objects are jointly
computed and optimized. Many of the existing efforts focus
on encoding and transmitting FVV streams, assuming the
models have been obtained offline. The online acquisition
of FVV has yet to be explored in depth. RT3DV developed
in this work is perhaps the first effort to generate free-
viewpoint video in real-time.

2.3 Real‑time 3D Reconstruction with RGB‑D
Camera

A real-time template-based reconstruction method of
dynamic scenes is demonstrated in [21], in which an
online template was deformed to fit the depth data from
an RGB-D camera. The template is non-rigidly tracked
to provide a detail layer to account for high-frequency
details. However, a rigid template must be captured at the
beginning [21]. DynamicFusion [27] is the pioneering
work for real-time and template-free 3D reconstruction of
dynamic scenes using RGB-D cameras, where a canoni-
cal reference model is updated incrementally by unwarp-
ing depth measurements returned with a single RGB-D
camera at a real-time rate. Several follow-ups improved
the quality of reconstruction via additional constraints.
For example, VolumeDeform [28] combines depth corre-
spondences with robust sparse correspondences (SIFT) to
avoid drift. Fusion4D [29] extend [27, 28] to a multiview
scenario in which 8 RGB-D cameras capture depth data
simultaneously, and multiple GPUs are used to compute
the deformation field and the fusion of all data frame.
However, the examples shown in [27–29] are limited to
the reconstructed scene only undergoing slow motion and
minor topological changes.

KillingFusion [30] estimates a dense deformation
field in the TSDF space constrained by a damped Kill-
ing motion via a variational formulation, capturing more
free movements. SobolevFusion [31] proposes to use
Sobolev gradient flow to compute the deformation field
and determine the voxel correspondences by matching
the low-dimensional signatures of their Laplacian eigen-
functions, allowing large motion and topological changes
of the scene. The recent work [32] uses the dual back
RGB cameras of a VR device to achieve real-time 3D
rendering. In [32], a video encoder is used to find a sparse
70 × 70 depthmap by block matching over a pair of recti-
fied images, and then a fast Laplacian solver is used to
smooth the depthmap. These methods all take in as input
the depthmaps return by RGB-D cameras at a real-time
rate. In our work, we tackle the problem of real-time 3D
rendering using multiview RGB cameras, where depth
information is derived from pure RGB images.

Mul� View Images Mul�view Stereo[8] Surface Reconstruc�on[35] Textured meshes[38]
Dense point cloud 3D meshes Textured meshes

Structure-from-Mo�on[18]
Sparse point cloud and Camera poses

Figure 2 Baseline image-based 3D reconstruction pipeline.

332 Journal of Signal Processing Systems (2022) 94:329–343

1 3

Table 1 summarizes the related 3D reconstruction algo-
rithms and their characteristics compared to the RT3DV
pipeline.

3 The RT3DV Algorithm

3.1 Overview

The inputs to the RT3DV algorithm are video streams
acquired synchronously by cameras on a camera array. The
outputs are a 3D surface model consisting of connected tri-
angular meshes and a texture map (color, texture, and shade)
for each triangular mesh. These outputs will be forwarded to
a 3D rendering engine (Unity [33] in this work) to display a
stereopsis video from given viewpoints. The RT3DV algo-
rithm performs the following tasks for each video frame: (a)
identifying 2D distinct feature points at each view (camera),
(b) establishing correspondence of 2D feature points across
all pairs of views, (c) estimating the 3D world coordinate of
corresponding 2D feature points, (d) applying the Delaunay
graph cut algorithm [34] to reconstruct the 3D triangular
mesh surface model using the estimated 3D feature points
as its vertices, and (e) estimating corresponding appearance
map (texture, color, shade) for each triangle surface pigment.

When the algorithm is initiated (initiation mode), the
cameras need to be calibrated to estimate their intrinsic
parameters (focal length, pixel scaling, etc.) and extrin-
sic parameters (positions and poses). If the camera array
remains stationary throughout the video, the camera param-
eters will be assumed available, and the initiation mode will
not be executed anymore. Once the cameras are calibrated,
the RT3DV algorithm will be executed in either a feature
detection mode or a feature tracking mode. In the feature
detection mode, 2D feature points will be detected at each
camera’s current frame. In the feature tracking mode, exist-
ing 2D features from the previous frame will be tracked.
Leveraging the temporal correlations between successive
video frames, the feature detection mode will be executed
periodically with the feature tracking mode executed in
between. The pipeline and block diagram of RT3DV are
shown in Fig. 3.

3.2 Initiation

To initiate the RT3DV algorithm, camera calibration will
be performed. An incremental structure from motion (iSfM)
algorithm [35–38] will be applied to jointly estimate the
camera intrinsic and extrinsic parameters and 3D coordi-
nates of feature points.

First, the speeded-up robust feature (SURF) [11] detec-
tion algorithm is applied to the first video frames of all
cameras to detect local features. Each detected local fea-
ture is represented by its 2D image coordinate within the
video frame and a feature descriptor characterizing its local
appearance. A fast matching algorithm FLANN [39] will
then be applied to find figures across neighboring views
having similar feature descriptors (appearance consist-
ency). This appearance-based matching results will be veri-
fied using the epipolar geometry constraints. The RANSAC
[40] algorithm will be applied to select a subset of matching
2D feature points of two views to estimate the correspond-
ing fundamental matrix [41]. If the majority of remaining
2D feature points of both views also meet the epipolar con-
straints with the estimated fundamental matrix, the relative
positions (extrinsic parameters) between this pair of cam-
eras then may be determined. Matching 2D feature points
that fail this geometric consistency check will be deemed
as outliers and discarded. Based on the estimated positions
and poses of cameras, 3D coordinates of the matching 2D
feature points may be determined. Given these estimated 3D
coordinates, one may proceed to refine the camera calibra-
tion. And then, the 3D coordinates will be refined further.
This iterative Bundle Adjustment [42] process will converge
as no further changes are observed. The iSfM repeats the
above steps for one camera at a time until all cameras are
processed. On completion of iSfM, the calibrated camera
parameters and estimated 3D coordinates of feature points
will be made available for subsequent frames.

3.3 Fast Reconstruction with Feature Tracking

Given the calibrated camera parameters, the set of match-
ing 2D feature points, and corresponding 3D coordinates,
one may leverage the temporal correlation of videos to

Table 1 Summary of related 3D reconstruction and rendering algorithms.

Algorithm Input Stationary
cameras

Dynamic
Scene

Hardware Real-time Output

Multi-view Stereo(MVS) [1–5, 15] Multi-view images
√

× RGB cameras × Dense point cloud
Free-Viewpoint Video(FVV) [22–26] Multi-view videos ×

√

RGB Cameras × Rendered videos
Volumetric Methods based on RGB-D

cameras [27–31]
Depthmaps

√ √

RGB-D camera
√

3D Volumetric Surface

RT3DV(ours) Multi-view videos
√ √

RGB camera
√

Rendered videos

333Journal of Signal Processing Systems (2022) 94:329–343

1 3

update the 2D feature positions using feature tracking
instead of the time-consuming feature detection.

The Kanade–Lucas–Tomasi (KLT) feature tracker [43]
will be used to track local movement of an existing 2D fea-
ture available from the previous frame. The outcome will
further be refined by applying a block matching algorithm
using the Sum of Absolute Differences (SAD) similarity
metric.

where Ep,Ec denote the previous and current frame and
N denotes a template window in a feature point’s local
neighborhood.

Since only existing 2D feature points from the previous
frame are tracked, the feature correspondence relationship

(1)SAD(k, l) =
∑

(i,j)∈N

|Ep(i, j) − Ec(i + k, j + l)|

will remain unchanged unless a 2D feature disappears (can-
not be tracked) due to dynamic scene change, in which case
the track will be discarded. If a matching 2D feature point
changes its position after tracking, its corresponding 3D
coordinates will also be updated by triangulation using the
stander DLT method for [41]. Otherwise, the previously
estimated 3D coordinates will remain unchanged. This on-
demand update strategy saves lots of computation when
only a small fraction of feature points move between suc-
cessive frames.

3.4 Fast Reconstruction based on Feature Detection

Feature tracking will capture movements of existing fea-
tures in a dynamic scene. It does not, however, detects
the presence of new features. Thus feature detection will

Figure 3 Block diagram of the
proposed pipeline RT3DV.

Camera
Calibra�on

New feature
detec�on

Delaunay surface
reconstruc�on

Texture Mapping

Rendering Engine

Calibration Tracking

Yes

Yes

No

No

Incoming Frames

Triangula�on[25]

KLT Tracking[15][16]Feature Detec�on[22]

Epipolar Geometry
Aided Matching

Triangula�on[25]

Detection

Trifocal Tensor Track
Filtering

Refinement

CPU
GPU

Structured-from-
Mo�on[18]

334 Journal of Signal Processing Systems (2022) 94:329–343

1 3

be performed periodically in the RT3DV algorithm. The
period between two feature detection frames depends on
prior knowledge of the dynamics of the scene and can be
adjusted. We assume that the camera calibration param-
eters are available. Therefore, after new feature detection
is performed, the robust feature matching process can be
accelerated by enforcing the epipolar geometry [41] and
aided by trifocal tensor [41]. Specifically, with calibrated
cameras, the essential matrix � between any two cameras
in the camera array is available. If a 2D feature point �
in the video frame of one camera and another 2D feature
point �′ in the video frame of another camera correspond
to the same 3D point, then

where � = �� is the epipolar line.
Instead of using Eq. (2) to verify the matches, we only

retain the matches if the corresponding point is within
3 pixels from the epipolar line. This verification proce-
dure only takes constant operations for each match, and
thus the complexity is O(Nm) , where Nm is the number of
initial matches returned by FLANN. Then, we build fea-
ture tracks (2D feature correspondences across all views)
from the remaining matches. The above procedure is called
epipolar-geometry-aided matching. These tracks are then
further refined by trifocal tensors.

Since all camera poses are available, we can quickly
calculate the epipolar line for each 2D feature. A simple
extension of epipolar geometry can help us find outliers:
given a pair of matched points (�1, �2) , the third corre-
sponding point �3 must pass both epipolar lines �

13
 and

�
23

 , where

In principle, we can determine �3 by intersecting �13 and �23:

However, this approach fails when �13 and �23 are paral-
lel and will be inaccurate if they are nearly colinear. This
happens if the 3D point � lies on or near the trifocal plane
defined by the three camera centers.

The degeneracy of the epipolar method can be avoided
by using the trifocal tensor in three views which is analo-
gous to fundamental matrix in two [41] views. The idea
is to construct a homograpy by finding a plane defined by
the back-projection of a line in the second view using the
trifocal tensor. The homography and �3 are [41],

(2)�
�T
�� = �

�T
� = 0

(3)�13 = �
−T
3
�̂13�13�

−1
�1

(4)�23 = �
−T
3
�̂23�23�

−1
2

�3

(5)�3 = �13 × �23

where �1 = (x1
1
, x2

1
, x3

1
) , �3 = (x1

3
, x2

3
, x3

3
) , the line in the sec-

ond view is �2 = (l1
2
, l2
2
, l3
2
) , and Ti

jk = ai
jbk

4
− a

4

jbk
i
 is the tri-

focal tensor, and aj
i
, b

j

i
 are the (i, j) element of the camera

projection matrices �2 and �3 for the second and third view.
A good chioce for �2 is the line that is through �2 and per-
pendiculat to the epipolar line. A comparison of accuracy
for the epopolar method and the trifocal tensor method is
shown in Fig. 4.

We couple the above procedure with RANSAC to fil-
ter outliers in a track and find the largest support set of
corresponding points. Because each view has at most five
elements (thus ten pairs possible), we can quickly iterate
the ten possible pairs for each track. Once the outliers are
filtered out, the stander DLT method [41] is used to triangu-
late for the 3D position for each track. As shown in Fig. 5, a
better rendering result is achieved with the proposed trifocal
tensor fitlering procedure. More discussion about Fig. 5 can
be found in Experiment and Discussion section.

The Trifocal-Tensor-based Track Filtering is summarized
as follow:

(6)hk
i
= l

j

2
T

jk

i

(7)xk
3
=

3
∑

i=1

3
∑

j=1

hk
i
xi
1

Figure 4 (a) A feature point is shown in the first view. (b) The cor-
responding point in the second view. (c) The corresponding point in
the third view can be found by intersecting two epipolar lines or trifo-
cal tensor. The epipolar method is prone to error while trifocal ten-
sor method is more robust. (d) Average transfer errors for the epipolar
method and trifocal tensor method over DTU dataset. Gaussian noise
with different standard deviation values are added to the correspond-
ing image points.

335Journal of Signal Processing Systems (2022) 94:329–343

1 3

3.5 Surface Reconstruction and Texture Mapping

Once we have an accurate point cloud, the next step is to
reconstruct a 3D surface model out of it. The desired surface
reconstruction algorithm should not only work well with the
sparse nature of our reconstructed point cloud but also be very
computationally efficient to satisfy the real-time requirement.
We use the Delaunay graph cut algorithm by Labatut et al. [34]
because it is fast and robust to changes in point density, which
helps to reconstruct difficult surface parts. In their work, they
also showed that their approach is very robust against outliers.

Once we obtain the 3D surfaces, each surface is pro-
jected to all views that observe it. If the 3D surface is
viewable by multiple views, we retrieve the texture from
the view whose viewing angle is smallest with the normal
of the 3D surface:

where �C is the viewing angle of view C, and n is the normal
of the 3D surface.

4 Experiment and Discussion

4.1 Setup and Protocol

4.1.1 Hardware and Software Platform

We evaluate the proposed RT3DV algorithm using the
hardware platform shown in Fig. 1. Five synchronous video

(8)argmin
C

⟨�C, �⟩

Figure 5 Rendering result. (a) rendered view without trifocal ten-
sor filtering (b) with trifocal tensor filtering (c) the ground truth (d)
Structural similarity (SSIM) index for rendering result with and with-
out trifocal tensor filtering.

Original Le� Front Right

Figure 6 Virtual views using textured 3D surfaces for the objects
Owl, Post Office, and Mushroom at a given frame. The virtual view is
generated by 3D rendering engine. The 1st, 2nd, 3rd columns are the
left, front, and right virtual view. The 1st row is the result generated
by the baseline pipeline, which takes around 5 s. The 2nd row is the
result of the proposed pipeline, which takes around 42 ms on average.

Table 2 Timing for baseline pipeline.

Objects Dense [2] Surface Texture Total

Mushroom 1.4 s 1.2 s 1.4 s 4.0 s
Post Office 1.3 s 2.0 s 2.1 s 5.4 s
Owl 1.4 s 1.9 s 2.4 s 5.7 s

336 Journal of Signal Processing Systems (2022) 94:329–343

1 3

streams are acquired from five micro-cameras (dark squares
in Fig. 1(a)) simultaneously. The displacements between
cameras are around 5 cm, as shown in Fig. 1(a). The camera
array assembly is mounted on the top of an FLC laparoscope
trainer box. The objects are placed at the bottom of the box
and will be moved manually during the video capture to
emulate a dynamic scene.

This platform is a prototype 3D visualization system
developed to enhance the visualization of traditional lapa-
roscope [6–8]. Each camera has a resolution of 640 × 480
pixels and has a frame rate of 30 frames per second (fps).
Each camera is attached to a Raspberry Pi video captur-
ing board, which compresses the video into Mpeg-4 format.
The compressed video is then transmitted through Ethernet
cables to a desktop PC to be processed. The PC is equipped
with an 8-core 4.00 Hz i7-6770k CPU, a GeForce GTX 2080
Ti GPU, 16 GB main memory running Ubuntu 16.04 operat-
ing system.

For the baseline pipeline, we used the C++ implementa-
tion as SfM [35]. We chose the Cuda implementation of
MVS [2]. The surface reconstruction [34] is implemented
in C++ by [36]. RT3DV is implemented in C++ using
OpenCV with CUDA 9 enabled, where SURF [11] and
FLANN [39] matching run in GPU.

4.1.2 Data Sets

We generated three sets of multiview video streams, one
for each object, using the experiment platform described
above. Besides, we perform the same experiment on the pub-
lic available DTU MVS dataset [44], where underlying point
clouds, the camera poses, and the images for each camera are
all available. Since the objects are stationary, we first trans-
late the underlying point cloud and then back-project it to all
cameras to generate the multiview videos of moving objects.

4.1.3 Protocols

We ran the baseline pipeline and RT3DV on all the mul-
tiview video frames in both datasets. We chose the run-
ning time to be the time interval between the completion
of texture mapping between the successive frames. For the
baseline pipeline, we excluded SfM and only measured the
running time between the end of SfM to the end of tex-
ture mapping because SfM is only performed once as the
initiation step in RT3DV. The processing time per frame
is the average running time of all successive frames for
each video. We conducted three trials of the experiment
and reported the average processing time per frame of the
three trials.

4.2 Results

4.2.1 Timing

For the three multiview videos collected in the FLC
laparoscope trainer box, we remove the tracked features
whose error is greater than five and triangulate the rest.
The algorithm is set to re-detect features per 10 frames.
The running time is related to the number of feature points
being processed. With a large number of features, the pro-
cessing time for tracking, epipolar-geometry-aided match-
ing, and trifocal-tensor-based track filtering and surface
reconstruction can worsen.The baseline pipeline tries to
find the dense feature point cloud. However, for scenes
that have few feature points, it fails to compute the scene
geometry, which introduces holes in the reconstruction,
as shown in the last row of Fig. 6. The timing for RT3DV
and the baseline pipeline are summarized in Tables 2 and
3. The number of feature points and 3D triangles can be
found in Table 4.

Table 3 Timing for RT3DV.
Feature detection is performed
every 10 frames.

Objects Detect KLT Tri Surface Texture Avg

Mushroom 66 ms 9 ms 10 ms 10 ms 13ms 43 ms
Post Office 57 ms 8 ms 9 ms 8ms 11ms 38 ms
Owl 63 ms 10 ms 11 ms 10 ms 12 ms 45 ms

Table 4 Comparison of number
of features and triangles and
PSNR.

Features Triangles PNSR

Baseline Ours Baseline Ours Baseline Ours

Mushroom 14733 370 29418 715 14.9 dB 14.4 dB
Post Office 15710 281 31383 585 17.1 dB 16.1 dB
Owl 17637 303 35240 622 16.9 dB 16.0 dB

337Journal of Signal Processing Systems (2022) 94:329–343

1 3

4.2.2 Quality Metric and Evaluation

A key result of this work is that the visual quality of ren-
dered images using a sparse point cloud is comparable to
that using a dense point cloud. To facilitate objective vis-
ual quality evaluation, we adopt a protocol similar to the
leave one out cross-validation method: we render a view at
a viewing angle that coincides with one of the cameras and
compute the peak signal to noise ratio (PSNR) between the
rendered video frame and the acquired video frame (ground
truth) without using any video frames from that validation
camera.

Figure 7 shows the original image and the rendered view
generated by our method and the baseline pipeline. In our
experiment, we track feature points for ten frames and re-
detect new feature points. Figure 8 shows the tracking result
of our method as opposed to the classic pipeline. The aver-
aged PSNR of Fig. 8 is recorded Table 4. The experiment
is repeated with and without the epipolar geometry aided
matching and the proposed trifocal tensor based filtering
procedure. The rendered view and the structural similarity
(SSIM) are computed and shown in Fig. 5. A qualitatively

and quantitatively better result is obtained with the proposed
matching and filtering procedure.

For the DTU dataset, the camera configurations are
shown in Fig. 9. We test the baseline pipeline and RT3DV
on four objects (object 1, 5, 6, 45) for six camera configura-
tions (Green, Blue, Red, Cyan, Magenta, Yellow), as shown
in Fig. 9. For each camera configuration, we reconstruct the
image of the center view and computer the PSNRs with the
original image using RT3DV and the baseline pipeline.
Figure 10 shows the generated view. Table 5 and Fig. 11
show the PNSR and averaged processing time of our pipe-
line and the baseline pipeline, from which we see that the
results of RT3DV and the baseline pipeline have similar
PSNR but RT3DV is orders of magnitude faster than the
baseline.

5 Discussion

Number of features and processing time. The processing
time of the proposed pipeline heavily relies on the accuracy
and the number of feature points extracted from the scene.

Original RTMVS Baseline

Figure 7 Rendered view to an original view using depthmaps only.
Images in the 1st column are original images. The 2nd column are gen-
erated by RT3DV. The 3rd column are generated by the Patchmatch-
based MVS implemented by Galliani et al. [2].

Figure 8 From left to right are the rendered view for the moving objects. The 1st row are the results of the baseline pipeline which takes more
than 5s per frame. The 2nd row are the rendered results for RT3DV that takes 44ms per frame on average.

Figure 9 Camera configuration for computing PNSR for virtual view.
Each camera configuration has five cameras. We reconstruct the mid-
dle view and compute the PSNRs with the real image of the middle
view using RT3DV and the baseline pipeline. Config 1-6 correspond
to camera group of Green, Blue, Red, Cyan, Magenta, Yellow.

338 Journal of Signal Processing Systems (2022) 94:329–343

1 3

Our virtual view is generated by rendering the 3D model
computed by the sparse point cloud. If the number of points
in the point cloud is too few, the point cloud will not capture
the 3D geometry of the scene well. On the other hand, if
the number of features is too large with similar accuracy,
the reconstruction would take too long to complete, as the
number of features has a direct relation to each stage of the
pipeline. In our experiment of the laparoscope training box,

the number of features is between 280 to 400, and the aver-
ages reconstruction time per frame is around 42 ms.

Stationary camera poses. The proposed pipeline assumes
the relative camera poses are stationary. If the relative cam-
era poses have changed, then we need to calibrate the cam-
eras, which can be done by running SfM from scratch.

Original Baseline RTMVS Original Baseline RTMVS Original Baseline RTMVS
Group 1 Group 2 Group 3

Group 4 Group 5 Group 6

Group 1 Group 2 Group 3

Group 4 Group 5 Group 6

Group 1 Group 2 Group 3

Group 4 Group 5 Group 6

Config 1 Config 2 Config 3

Config 4 Config 5 Config 6

Figure 10 Generated virtual center views for object 1, object 5, object 6, object 45 (in order) of the DTU dataset [44] by baseline pipeline and
RT3DV.

339Journal of Signal Processing Systems (2022) 94:329–343

1 3

6 Conclusion

In this work, we propose RT3DV for near-field scenes. The
proposed algorithm utilizes the temporal and spatial correla-
tion of multiview videos and is faster than the state-of-the-
art pipeline in order of magnitude. While the state-of-the-art
pipeline reconstructs fine details on parts of the scene, it
introduces holes on the part that has fewer features. Our effi-
cient and straightforward pipeline can preserve the integrity
of the scene and provide an adequate visualization result.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Furukawa, Y., & Ponce, J. (2010). Accurate, dense, and robust
multiview stereopsis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(8), 1362–1376. https:// doi. org/ 10. 1109/
TPAMI. 2009. 161

 2. Galliani, S., Lasinger, K., & Schindler, K. (2015). Massively par-
allel multiview stereopsis by surface normal diffusion. In 2015
IEEE International Conference on Computer Vision (ICCV) (pp.
873–881). https:// doi. org/ 10. 1109/ ICCV. 2015. 106

 3. Shen, S. (2013). Accurate multiple view 3d reconstruction using
patch-based stereo for large-scale scenes. IEEE Transactions on
Image Processing, 22(5), 1901–1914. https:// doi. org/ 10. 1109/ TIP.
2013. 22379 21

 4. Xu, Q., & Tao, W. (2018). Multi-view stereo with asymmet-
ric checkerboard propagation and multi-hypothesis joint view
selection.

 5. Zheng, E., Dunn, E., Jojic, V., & Frahm, J. M. (2014). Patchmatch
based joint view selection and depthmap estimation. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition (pp.
1510–1517). https:// doi. org/ 10. 1109/ CVPR. 2014. 196

 6. Kim, J. J., Watras, A., Liu, H., Zeng, Z., Greenberg, J. A.,
Heise, C. P., Hu, Y. H., & Jiang, H. (2018). Large-field-of-view
visualization utilizing multiple miniaturized cameras for lapa-
roscopic surgery. Micromachines, 9(9). https:// doi. org/ 10. 3390/
mi909 0431. https:// www. mdpi. com/ 2072- 666X/9/ 9/ 431

 7. Watras, A., Ke, J., Zeng, Z., Kim, J. J., Liu, H., Jiang, H., &
Hu, Y. H. (2017). Parallax mitigation for real-time close field
video stitching. In 2017 International Conference on Compu-
tational Science and Computational Intelligence (CSCI) (pp.
568–571). https:// doi. org/ 10. 1109/ CSCI. 2017. 349

Table 5 PSNR and Processing time per frame for reconstructing the middle view of different camera configurations in Fig. 9.

(PSNR,time) Config 1 Config 2 Config 3 Config 4 Config 5 Config 6

Object1 RT3DV (14.28 dB, 215
ms)

(17.06 dB, 251ms) (16.86 dB, 242ms) (16.76 dB, 212
ms)

(15.96 dB, 245
ms)

(17.78 dB, 199 ms)

Baseline (15.49 dB, 14929
ms)

(17.12 dB, 17745
ms)

(16.54 dB, 16329
ms)

(17.02 dB, 16936
ms)

(18.41 dB, 17789
ms)

(19.90 dB, 17622
ms)

Object5 RT3DV (13.85 dB, 328
ms)

(16.46 dB, 342
ms)

(15.57 dB, 383
ms)

(15.48 dB, 359
ms)

(15.57 dB, 461
ms)

(17.76 dB, 518 ms)

Baseline (14.18 dB, 14993
ms)

(16.45 dB, 15643
ms)

(15.69 dB, 15867
ms)

(15.71 dB, 15709
ms)

(17.34 dB, 16878
ms)

(18.14 dB, 17752
ms)

Object6 RT3DV (14.34 dB, 383
ms)

(15.75 dB, 405
ms)

(16.71 dB, 377
ms)

(15.73 dB, 318
ms)

(14.96 dB, 440
ms)

(19.43 dB, 457 ms)

Baseline (13.60 dB, 15845
ms)

(16.62 dB, 16871
ms)

(15.76 dB, 17025
ms)

(16.86 dB, 16470
ms)

(13.31 dB, 17129
ms)

(18.28 dB, 17241
ms)

Object45 RT3DV (13.48 dB, 382
ms)

(17.59 dB, 339
ms)

(18.17 dB, 375
ms)

(18.84 dB, 366
ms)

(15.26 dB, 351
ms)

(18.45 dB, 371 ms)

Baseline (15.08 dB, 13863
ms)

(19.01 dB, 14967
ms)

(17.87 dB, 15598
ms)

(19.52 dB, 15475
ms)

(15.84 dB, 14614
ms)

(18.62 dB, 15736
ms)

Figure 11 Comparison of processing time per frame and PSNR
between RT3DV and the baseline pipeline. Config 1-6 correspond to
Green, Blue, Red, Cyan, Magenta, Yellow. Object 1, 5, 6, 45 corre-
spond to markers of cycle, plus, star, cross.

340 Journal of Signal Processing Systems (2022) 94:329–343

https://doi.org/10.1109/TPAMI.2009.161
https://doi.org/10.1109/TPAMI.2009.161
https://doi.org/10.1109/ICCV.2015.106
https://doi.org/10.1109/TIP.2013.2237921
https://doi.org/10.1109/TIP.2013.2237921
https://doi.org/10.1109/CVPR.2014.196
https://doi.org/10.3390/mi9090431
https://doi.org/10.3390/mi9090431
https://www.mdpi.com/2072-666X/9/9/431
https://doi.org/10.1109/CSCI.2017.349

1 3

 8. Watras, A.J., Kim, J. J., Liu, H., Hu, Y.H., & Jiang, H. (2018).
Optimal camera pose and placement configuration for maximum
field-of-view video stitching. Sensors, 18(7). https:// doi. org/ 10.
3390/ s1807 2284. https:// www. mdpi. com/ 1424- 8220/ 18/7/ 2284

 9. Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vision,
60(2), 91–110. https:// doi. org/ 10. 1023/B: VISI. 00000 29664.
99615. 94

 10. Rosten, E., & Drummond, T. (2006). Machine learning for high-
speed corner detection. In A. Leonardis, H. Bischof, & A. Pinz
(Eds.), Computer Vision - ECCV 2006 (pp. 430–443). Berlin,
Heidelberg: Springer Berlin Heidelberg.

 11. Bay, H., Tuytelaars, T., & Van Gool, L. (2006). Surf: Speeded up
robust features. In A. Leonardis, H. Bischof, & A. Pinz (Eds.),
Computer Vision - ECCV 2006 (pp. 404–417). Berlin, Heidelberg:
Springer Berlin Heidelberg.

 12. Michael Bleyer, C.R., & Rother, C. (2011). Patchmatch stereo -
stereo matching with slanted support windows. In Proceedings of
the British Machine Vision Conference (pp. 14.1–14.11). BMVA
Press. http:// dx. doi. org/ 10. 5244/C. 25. 14

 13. Barnes, C., Shechtman, E., Finkelstein, A., & Goldman, D. B.
(2009). Patchmatch: A randomized correspondence algorithm
for structural image editing. ACM Transactions on Graphics,
28(3). https:// doi. org/ 10. 1145/ 15313 26. 15313 30

 14. Besse, F., Rother, C., Fitzgibbon, A., & Kautz, J. (2014). PMBP:
Patchmatch belief propagation for correspondence field esti-
mation. International Journal of Computer Vision, 110(1),
2–13. https:// doi. org/ 10. 1007/ s11263- 013- 0653-9

 15. Besse, F., Rother, C., Fitzgibbon, A., & Kautz, J. (2014). PMBP:
Patchmatch belief propagation for correspondence field esti-
mation. International Journal of Computer Vision, 110(1),
2–13. https:// doi. org/ 10. 1007/ s11263- 013- 0653-9

 16. Jancosek, M., & Pajdla, T. (2011). Multi-view reconstruction
preserving weakly-supported surfaces. In CVPR 2011 (pp. 3121–
3128). https:// doi. org/ 10. 1109/ CVPR. 2011. 59956 93

 17. Jancosek, M., & Pajdla, T. (2014). Exploiting visibility infor-
mation in surface reconstruction to preserve weakly supported
surfaces. International Scholarly Research Notices, 2014,
798595. https:// doi. org/ 10. 1155/ 2014/ 798595

 18. Waechter, M., Moehrle, N., & Goesele, M. (2014). Let there be
color! large-scale texturing of 3d reconstructions. In D. Fleet,
T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Computer Vision
- ECCV 2014 (pp. 836–850). Cham: Springer International
Publishing.

 19. Fu, Y., Yan, Q., Yang, L., Liao, J., & Xiao, C. (2018). Texture
mapping for 3d reconstruction with RGB-d sensor. In 2018 IEEE/
CVF Conference on Computer Vision and Pattern Recognition
(pp. 4645–4653). https:// doi. org/ 10. 1109/ CVPR. 2018. 00488

 20. Zhou, Q. Y., & Koltun, V. (2014). Color map optimization for 3d
reconstruction with consumer depth cameras. ACM Transactions
on Graphics, 33(4). https:// doi. org/ 10. 1145/ 26010 97. 26011 34

 21. Zollhöfer, M., Nießner, M., Izadi, S., Rehmann, C., Zach, C.,
Fisher, M., Wu, C., Fitzgibbon, A., Loop, C., Theobalt, C., &
Stamminger, M. (2014). Real-time non-rigid reconstruction using
an RGB-D camera. ACM Transactions on Graphics, 33(4). https://
doi. org/ 10. 1145/ 26010 97. 26011 65

 22. Collet, A., Chuang, M., Sweeney, P., Gillett, D., Evseev, D.,
Calabrese, D., Hoppe, H., Kirk, A., & Sullivan, S. (2015). High-
quality streamable free-viewpoint video. ACM Transactions on
Graphics, 34(4). https:// doi. org/ 10. 1145/ 27669 45

 23. Lee, C. C., Tabatabai, A., & Tashiro, K. (2015). Free view-
point video (FVV) survey and future research direction. APSIPA
Transactions on Signal and Information Processing, 4. https://
doi. org/ 10. 1017/ ATSIP. 2015. 18

 24. Lipski, C., Klose, F., & Magnor, M. (2014). Correspond-
ence and depth-image based rendering a hybrid approach for

free-viewpoint video. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 24(6), 942–951. https:// doi. org/ 10.
1109/ TCSVT. 2014. 23023 79

 25. Mustafa, A., Kim, H., Guillemaut, J. Y., & Hilton, A.
(2016). Temporally coherent 4d reconstruction of complex
dynamic scenes. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (pp. 4660–4669). https:// doi.
org/ 10. 1109/ CVPR. 2016. 504

 26. Mustafa, A., Kim, H., Guillemaut, J. Y., & Hilton, A. (2015). Gen-
eral dynamic scene reconstruction from multiple view video. In
Proceedings of the IEEE International Conference on Computer
Vision (ICCV).

 27. Newcombe, R. A., Fox, D., & Seitz, S. M. (2015). Dynamicfu-
sion: Reconstruction and tracking of non-rigid scenes in real-time.
In 2015 IEEE Conference on Computer Vision and Pattern Rec-
ognition (CVPR) (pp. 343–352). https:// doi. org/ 10. 1109/ CVPR.
2015. 72986 31

 28. Innmann, M., Zollhöfer, M., Nießner, M., Theobalt, C., &
Stamminger, M. (2016). VolumeDeform: Real-time Volumetric
Non-rigid Reconstruction.

 29. Dou, M., Khamis, S., Degtyarev, Y., Davidson, P., Fanello, S. R.,
Kowdle, A., Escolano, S. O., Rhemann, C., Kim, D., Taylor, J.,
Kohli, P., Tankovich, V., & Izadi, S. (2016). Fusion4d: Real-time
performance capture of challenging scenes. ACM Transactions on
Graphics, 35(4). https:// doi. org/ 10. 1145/ 28978 24. 29259 69

 30. Slavcheva, M., Baust, M., Cremers, D., & Ilic, S. (2017). Kill-
ingfusion: Non-rigid 3d reconstruction without correspondences.
In 2017 IEEE Conference on Computer Vision and Pattern Rec-
ognition (CVPR) (pp. 5474–5483). https:// doi. org/ 10. 1109/ CVPR.
2017. 581

 31. Slavcheva, M., Baust, M., & Ilic, S. (2018). Sobolevfusion:
3d reconstruction of scenes undergoing free non-rigid motion.
In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 2646–2655). https:// doi. org/ 10. 1109/ CVPR.
2018. 00280

 32. Chaurasia, G., Nieuwoudt, A., Ichim, A. E., Szeliski, R., &
Sorkine-Hornung, A. (2020). Passthrough+: Real-time ste-
reoscopic view synthesis for mobile mixed reality. Proceed-
ings of the ACM in Computer Graphics and Interactive Tech-
niques, 3(1). https:// doi. org/ 10. 1145/ 33845 40

 33. Technologies, U. (2019). Unity. https:// unity. com/
 34. Labatut, P., Pons, J., & Keriven, R. (2009). Robust and efficient

surface reconstruction from range data. Computer Graphics
Forum, 28, 2275–2290. https:// doi. org/ 10. 1111/j. 1467- 8659.
2009. 01530.x

 35. Moulon, P., Monasse, P., & Marlet, R. (2013). Adaptive
structure from motion with a contrario model estimation. In
K. M. Lee, Y. Matsushita, J. M. Rehg, & Z. Hu (Eds.), Com-
puter Vision - ACCV 2012 (pp. 257–270). Berlin, Heidelberg:
Springer Berlin Heidelberg.

 36. Schnberger, J. L., & Frahm, J. M. (2016). Structure-from-
motion revisited. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (pp. 4104–4113). https:// doi.
org/ 10. 1109/ CVPR. 2016. 445

 37. Snavely, N., Seitz, S. M., & Szeliski, R. (2006). Photo tourism:
Exploring photo collections in 3d. ACM Transactions on Graph-
ics, 25(3), 835–846. https:// doi. org/ 10. 1145/ 11419 11. 11419 64

 38. Wu, C. (2013). Towards linear-time incremental structure from
motion. In 2013 International Conference on 3D Vision - 3DV
2013 (pp. 127–134). https:// doi. org/ 10. 1109/ 3DV. 2013. 25

 39. Muja, M., & Lowe, D. G. (2009). Fast approximate nearest
neighbors with automatic algorithm configuration. In VISAPP
International Conference on Computer Vision Theory and
Applications (pp. 331–340).

 40. Fischler, M. A., & Bolles, R. C. (1981). Random sample con-
sensus: A paradigm for model fitting with applications to image

341Journal of Signal Processing Systems (2022) 94:329–343

https://doi.org/10.3390/s18072284
https://doi.org/10.3390/s18072284
https://www.mdpi.com/1424-8220/18/7/2284
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.5244/C.25.14
https://doi.org/10.1145/1531326.1531330
https://doi.org/10.1007/s11263-013-0653-9
https://doi.org/10.1007/s11263-013-0653-9
https://doi.org/10.1109/CVPR.2011.5995693
https://doi.org/10.1155/2014/798595
https://doi.org/10.1109/CVPR.2018.00488
https://doi.org/10.1145/2601097.2601134
https://doi.org/10.1145/2601097.2601165
https://doi.org/10.1145/2601097.2601165
https://doi.org/10.1145/2766945
https://doi.org/10.1017/ATSIP.2015.18
https://doi.org/10.1017/ATSIP.2015.18
https://doi.org/10.1109/TCSVT.2014.2302379
https://doi.org/10.1109/TCSVT.2014.2302379
https://doi.org/10.1109/CVPR.2016.504
https://doi.org/10.1109/CVPR.2016.504
https://doi.org/10.1109/CVPR.2015.7298631
https://doi.org/10.1109/CVPR.2015.7298631
https://doi.org/10.1145/2897824.2925969
https://doi.org/10.1109/CVPR.2017.581
https://doi.org/10.1109/CVPR.2017.581
https://doi.org/10.1109/CVPR.2018.00280
https://doi.org/10.1109/CVPR.2018.00280
https://doi.org/10.1145/3384540
https://unity.com/
https://doi.org/10.1111/j.1467-8659.2009.01530.x
https://doi.org/10.1111/j.1467-8659.2009.01530.x
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/10.1145/1141911.1141964
https://doi.org/10.1109/3DV.2013.25

1 3

analysis and automated cartography. Communications of the
ACM, 24(6), 381–395. https:// doi. org/ 10. 1145/ 358669. 358692

 41. Hartley, R., & Zisserman, A. (2003). Multiple View Geometry in
Computer Vision (2nd ed.). USA: Cambridge University Press.

 42. Zhang, J., Boutin, M., & Aliaga, D. G. (2006). Robust bundle
adjustment for structure from motion. In 2006 International
Conference on Image Processing (pp. 2185–2188). https:// doi.
org/ 10. 1109/ ICIP. 2006. 312973

 43. Lucas, B. D., & Kanade, T. (1981). An iterative image regis-
tration technique with an application to stereo vision. In Pro-
ceedings of the 7th International Joint Conference on Artificial
Intelligence, IJCAI’81 (vol. 2, pp. 674–679). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

 44. Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., & Aans, H.
(2014). Large scale multi-view stereopsis evaluation. In 2014
IEEE Conference on Computer Vision and Pattern Recognition
(pp. 406–413). https:// doi. org/ 10. 1109/ CVPR. 2014. 59

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Jianwei Ke (No photo) received
the B.S. Degree in Electrical
Engineering from the Univer-
sity of Delaware with the high-
est distinction in 2015. He is a
Ph.D. candidate in the ECE
department at the University of
Wisconsin-Madison since 2016.
In 2020, he completed M.S.
degrees in Electrical Engineer-
ing and Computer Science at
the University of Wisconsin-
Madison. His research interests
span general computer vision
and signal/image processing.
He is currently working on

image-based 3D reconstruction and real-time 3D reconstruction and
rendering.

Alex Watras (No photo) was
born in Minocqua, WI, in
1993. He received the B.S. in
electrical engineering with a
secondary major in Applied
Mathematics from the Univer-
sity of Wisconsin - Madison,
Madison, Wisconsin, in 2015.
In 2018 He completed the
M.S. degree in Electr ical
Engineering at the University
of Wisconsin-Madison, and he
is currently pursuing a Ph.D.

in electrical engineering at the same time. His research focuses on
real-time video stitching, optimal camera placement for small
camera arrays, and parallax mitigation methods in video
mosaics.

Jae‑Jun Kim (No photo) received
his Ph.D. in Bio and Brain Engi-
neering from Korea Advanced
Institute of Science and Technol-
ogy (KAIST) in 2015 after a B.S.
and M.S. degree in Bio and Brain
Engineering from KAIST in
2008 and 2010, respectively. In
2015, he was a postdoctoral
researcher in Information and
Electronics Research Institute at
KAIST. He is currently a post-
doctoral researcher at the Depart-
ment of Electrical and Computer
Engineering of University of
Wisconsin-Madison, USA. His

research interests are in biomedical engineering, bioinspired photonic
devices, and smart and functional materials.

Hewei Liu (No photo) is an assis-
tant scientist at the Department
of Electrical and Computer
Engineering in University of
Wiscons in -Madi son . H i s
research interest including devel-
opment of MEMS and sensors,
micro- and nanofabrication,
optics and photonic.

Hongrui Jiang (No photo) received
the B.S. degree in physics from
Peking University, Beijing, China,
and the M.S. and Ph.D. degrees in
electrical engineering from Cornell
University, Ithaca, NY, USA, in
1999 and 2001, respectively. From
2001 to 2002, he was a Post-
Doctoral Researcher at the Berke-
ley Sensor and Actuator Center,
University of California at Berke-
ley. He is currently the Vilas Distin-
guished Achievement Professor
and the Lynn H. Matthias Professor
in engineering with the Department
of Electrical and Computer Engi-

neering, and a Faculty Affiliate with the Department of Biomedical Engi-
neering, the Department of Materials Science and Engineering, and the
Department of Ophthalmology and Visual Sciences, and a member of the
McPherson Eye Research Institute, University of Wisconsin–Madison. His
research interests are in microfabrication technology, biological and chemical
microsensors, microactuators, optical microelectromechanical systems,
smart materials and micro-/nanostructures, lab-on-chip, and biomimetics,
and bioinspiration. He is a Member of the Editorial Board of the IEEE/
ASME JOURNAL OF MICROELECTROMECHANICAL SYSTEMS.
Dr. Jiang is a fellow of the Institute of Physics, the Royal Society of Chem-
istry, and the American Institute for Medical and Biological Engineering.
He was a recipient of the National Science Foundation CAREER Award and

342 Journal of Signal Processing Systems (2022) 94:329–343

https://doi.org/10.1145/358669.358692
https://doi.org/10.1109/ICIP.2006.312973
https://doi.org/10.1109/ICIP.2006.312973
https://doi.org/10.1109/CVPR.2014.59

1 3

the Defense Advanced Research Projects Agency Young Faculty Award in
2008, the H. I. Romnes Faculty Fellowship of the University of Wisconsin–
Madison in 2011, the National Institutes of Health Director’s New Innovator
Award in 2011, the Vilas Associate Award of the University of Wisconsin
in 2013, and the Research to Prevent Blindness Stein Innovation Award in
2016.

Yu Hen Hu (No photo) received
BSEE from National Taiwan Uni-
versity, Taiwan ROC in 1976, and
MSEE and PhD degrees from
University of Southern Califor-
nia, Los Angeles, CA, USA in
1982. He was a member of fac-
ulty in the Electrical Engineering
Department of Southern Method-
ist University, Dallas, Texas from
1983 to 1987. Since 1987, he has
been with the Department of
Electrical and Computer Engi-
neering, University of Wisconsin,
Madison where he is currently a

professor. In 1999, Dr. Hu is a visiting researcher at Bell Laboratories,
Holmdel NJ, and at Microsoft Research – China, Beijing, China. He has
been a visiting professor at National Taiwan University, Graduate Insti-
tute of Electronics, Taipei, Taiwan in 2007 and 2015. Dr. Hu’s has broad
research interests ranging from design and implementation of signal
processing algorithms, computer aided design and physical design of
VLSI, pattern classification and machine learning algorithms, and image
and signal processing in general. He has published more than 380 techni-
cal papers, edited, and co-authored four books and many book chapters
in these areas. Dr. Hu has served as an associate editor for the IEEE
Transaction of Acoustic, Speech, and Signal Processing, IEEE signal
processing letters, European Journal of Applied Signal Processing, Jour-
nal of VLSI Signal Processing, and IEEE Multimedia magazine. He has
served as the secretary and an executive committee member of the IEEE
signal processing society, a board of governor of IEEE neural network
council representing the signal processing society, the chair of signal
processing society neural network signal processing technical committee,
and the chair of IEEE signal processing society multimedia signal pro-
cessing technical committee. He has also served as a member of IEEE
Jack S. Kilby Signal Processing Medal committee, and a steering com-
mittee member of the international conference of Multimedia and Expo
on behalf of IEEE Signal processing society. Dr. Hu is a fellow of IEEE.

343Journal of Signal Processing Systems (2022) 94:329–343

	Towards Real-time 3D Visualization with Multiview RGB Camera Array
	Abstract
	1 Introduction
	2 Related Work
	2.1 Image-based 3D Reconstruction
	2.1.1 Multiview Stereo (3D Dense Point Cloud Reconstruction)
	2.1.2 3D Surface Reconstruction from Dense Point Clouds
	2.1.3 Texture Mapping

	2.2 Free-Viewpoint Video
	2.3 Real-time 3D Reconstruction with RGB-D Camera

	3 The RT3DV Algorithm
	3.1 Overview
	3.2 Initiation
	3.3 Fast Reconstruction with Feature Tracking
	3.4 Fast Reconstruction based on Feature Detection
	3.5 Surface Reconstruction and Texture Mapping

	4 Experiment and Discussion
	4.1 Setup and Protocol
	4.1.1 Hardware and Software Platform
	4.1.2 Data Sets
	4.1.3 Protocols

	4.2 Results
	4.2.1 Timing
	4.2.2 Quality Metric and Evaluation

	5 Discussion
	6 Conclusion
	References

