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Abstract

New digital cameras, such as Canon SD1100 and Nikon

COOLPIX S8100, have an Auto Exposure (AE) function

that is based on motion estimation. The motion estimation

helps to set short exposure and high ISO for frames with fast

motion, thereby minimizing most motion blur in recorded

videos. This AE function largely turns video enhancement

into a denoising problem. This paper studies the problem of

how to achieve high-quality video denoising in the context

of motion-based exposure control. Unlike previous denois-

ing works which either avoid using motion estimation, such

as BM3D [7], or assume reliable motion estimation as in-

put, such as [13], our method evaluates the reliability of

flow at each pixel and uses that reliability as a weight to

integrate spatial denoising and temporal denoising. This

weighted combination scheme makes our method robust to

optical flow failure over regions with repetitive texture or

uniform color and combines the advantages of both spa-

tial and temporal denoising. Our method also exploits high

quality frames in a sequence to effectively enhance noisier

frames. In experiments using both synthetic and real videos,

our method outperforms the state of the art [7, 13].

1. Introduction

In most automated vision systems and consumer cam-

eras, it is desirable to automatically determine an appro-

priate exposure time based on the scene; this function is

known as Auto Exposure (AE). Traditionally, Auto Ex-

posure is mainly determined by environment brightness:

bright scenes lead to a short exposure time and/or a large

aperture. This control scheme is simple to implement and

has been widely adopted. However, when the brightness

level of a scene remains constant, this scheme does not con-

sider camera motion or subject motion and therefore often

leads to motion blur. Small consumer cameras and mobile

vision systems can benefit from a better control scheme for

a variety of reasons.

• These cameras often have small, fixed aperture sizes.

In low-light conditions, the AE must resort to a long

exposure time or a high ISO setting. A long exposure

time will result in significant motion blur when mo-

tion is present. On the other hand, a high ISO setting

will provide lower quality images than possible if the

motion is small.
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Figure 1. The benefit of denoising videos captured with motion-

based exposure control. Top: A panoramic image from which

we generate a synthetic video whose viewport (red box) moves

along the red zigzag curve with varying speed. Bottom: If a con-

stant short exposure is applied to each frame to minimize blur, the

captured video has constant low PSNR (dashed red curve), and a

state-of-the-art video denoising [13] improves its PSNR to about

34dB (solid red curve). If exposure time is set adaptively based

on motion estimation, the input video has higher PSNR (dashed

black curve), and our denoising algorithm produces a much higher

quality video with a total PSNR of 39 dB (solid black curve). Best

viewed electronically in color.

• The handheld and/or mobile nature of these camera

systems make them susceptible to camera shake and

widely variable movement patterns. A fixed exposure

time may be excessively short for some frames and re-

sult in motion blur for other frames.

As more computing power is put in digital cameras, new

cameras, such as Canon SD1100 and Nikon COOLPIX

S8100, have an Auto Exposure function that is based on mo-

tion estimation. These cameras perform motion estimation

during setup time (when the shutter button is half-pressed)

and adjust the shutter and ISO setting so that blur is min-

imized in the captured photograph. This functionality is

currently only available in single-shot mode on commer-
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cial cameras; however, the same concept can be applied to

video capture by using the apparent motion estimated from

the previous two frames to select the exposure time and ISO

for the next frame. In the captured video, most frames do

not have blur, but those with short exposure time will be

noisy due to a high ISO setting. This AE function largely

turns video enhancement into a denoising problem.

This paper studies the problem of how to achieve high-

quality video denoising in the context of motion-based expo-

sure control. This problem is pertinent as motion deblurring

in general is a challenging problem; achieving high-quality

denoising in this context may greatly reduce, although not

eliminate, the need of motion deblurring for video enhance-

ment. This problem is promising as Figure 1 shows; it is

also difficult in its own ways.

• Within a sequence captured using motion-based Auto

Exposure, there are often high quality frames, which

correspond to the frames with little apparent motion

and captured with relatively long exposure and low

ISO.1 Ideally, we would want to use the high qual-

ity frames to better enhance the noisier frames; at the

same time, we would not want the noisy frames to

compromise the high quality frames during the denois-

ing process.

• Noisy frames are captured with high ISO and short ex-

posure because of fast motion. To exploit high quality

frames to enhance noisy frames, we would need robust

motion estimation that can handle large displacement.

In our experiments, we commonly found displacement

of 70 or more, which confound even top-performing

optical flow methods that have been adopted in state-

of-the-art video denoising.

In this paper, we present a high quality video denoising

method in the context of motion-based exposure control, by

combining spatial denoising and temporal denoising in a

novel way. Our combination is based on an intuitive ob-

servation. Specifically, spatial methods like BM3D [7] per-

form well if the image has abundant locally similar struc-

ture. Its performance starts to degrade when the local struc-

ture is unique. Motion-compensated filtering on the other

hand works best when local patches are unique, because the

optical flow can be reliably estimated. Therefore, our idea

is to detect the reliability of the flow for each pixel, and use

the reliability as a weight to combine the results of BM3D

and motion-compensated filtering.

Unlike previous denoising works which either avoid us-

ing motion estimation, such as BM3D [7], or assume reli-

able motion estimation as input, such as [13], our method

selectively operates in whichever regime works best. As a

1For example, although it is hard to hold a camera perfectly still for

a long period, it is also rare that our hands would continuously shake a

camera; shaky intervals are always intermingled with steady moments.

result, our algorithm performs better than both VBM3D [6]

and the latest video denoising algorithm [13].

Our flow reliability evaluation is based on a forward-

backward consistency check, which is a widely used tech-

nique in stereo and motion estimation. However, this relia-

bility measure of motion estimation has not been exploited

for improving video denoising performance in the literature,

to the best of our knowledge.

2. Related Work

Our work is most related to image and video denoising

and enhancement.

Denoising Image denoising has been studied for several

decades. A complete review is beyond the scope of this

paper. We refer the readers to the previous work sections

in [4, 7] for excellent reviews of the literature. An incom-

plete list of recent works include [16, 4, 8, 14, 7, 18, 9].

In particular, the methods that are based on local self-

similarity, such as non-local means [4] and BM3D [7], are

particularly notable because of their simple ideas and im-

pressive results. The non-local means and BM3D methods

do not perform well when local image patterns are unique.

Video denoising [2, 6, 5, 13] can address this limitation

as the temporal dimension provides additional redundant

data. Liu and Freeman [13] showed that the spatial regu-

larization in the optical flow can be used to ensure tempo-

ral coherence in removing structured noise. Multi-view de-

noising [19, 11, 21] is another way of addressing this lim-

itation, which exploits noisy measurements from multiple

viewpoints to reconstruct a clean image. Zhang et al. [21]

observed that 3D depth can be used as a constraint to find

more reliable matches to further improve the performance

of multi-view image denoising.

Our work is most related to [13], in which the authors

integrate robust optical flow into a non-local means frame-

work; their work assumes reliable flow as input. Our work

does not assume the flow is reliable. Rather, we evaluate

the flow trajectory reliability for each pixel and use the re-

liability measure as a weight to combine spatial denoising

and temporal denoising results.

Video Enhancement using Stills Our work is also re-

lated to works that use high quality digital photos to en-

hance low resolution videos. For example, Bhat et al. [3]

and Schubert et al. [17] proposed an approach to enhance

low-resolution videos of a static scene by using multi-view

stereo to compute correspondences between low-resolution

video and high-resolution images; Gupta et al. [10] use op-

tical flow to compute correspondences and can therefore

handle dynamic scenes as well. Watanabe et al. [20] prop-

agate high frequency information in high-resolution frames

to low-resolution frames using motion compensation. Na-

gahara et al. [15] take a similar approach but use morphing
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based on feature matching instead of motion compensation.

In our work, the frame resolution is the same; what differs

is the noise level. We do not assume reliable flow as input;

instead, we use the reliability of the flow to combine spatial

denoising and temporal denoising.

3. Denoising Algorithm

Our denoising algorithm is based on the following intu-

ition. If an image region has unique texture patterns, we

would prefer to use temporal denoising, because optical

flow can be estimated reliably and spatial denoising usually

does not work well. On the other hand, if an image region

has repetitive texture or uniform color, we would prefer to

use spatial denoising because optical flow is unreliable and

self similarity makes spatial denoising work effectively. We

do not judge the flow reliability using a binary decision. In-

stead, we softly combine the spatial and temporal denoising

result using our reliability measure as weight. Next we ex-

plain our algorithm in detail.

Spatial Denoising We use the single-image denoising

method CBM3D [7] to perform our spatial denoising:

ÎS(zt) = CBM3D(It, zt), (1)

where It is the current input frame and zt is pixel lo-

cation. We apply this single denoising method to each

frame using the corresponding frame noise variance as pa-

rameter. We do not use CVBM3D, the video version of

CBM3D, because CVMB3D only handles constant noise

variance across the whole video volume, which would com-

promise the high quality frames in the captured video. We

choose CBM3D due to its performance, efficiency, and pub-

lic availability; other spatial denoising methods, such as

non-local means [4], can also be used instead.

Temporal Denoising along Reliable Flow We compute

the optical flow over a temporal window of ±H frames,

where we use H = 5 as in [13]. The flow may not be re-

liable for every pixel and every frame in the temporal win-

dow. We use the forward-backward consistency as a mea-

sure of flow reliability. If the flow vector from a pixel in

frame i to a pixel in frame j is denoted vij , then the flow

consistency error is ‖vij + vji‖
2. We consider the flow to

be consistent if the error is below some threshold (3 is used

in both our synthetic and real experiments).

For each pixel in frame It, we determine the frames with

consistent forward flow up to at most frame t + H , and

backward flow down to at most t − H . The set of frames

with consistent flow is denoted Hc. Hc is a function of the

pixel under consideration; however, we omit the function

notation for simplicity.

Once we have determined the frames with reliable flow,

the temporal pixel estimate is computed by filtering along

the optical flow:

ÎT (zt) =
1

Z

∑

i∈Hc

W (zi) · Ii(zi), (2)

where Z is a normalization factor and W (zi) is given by:

W (zi) =
(

β2

i + β2

t

)−
3

2 exp

{

−
‖P (zt)− P (zi)‖

2

β2

i + β2
t

}

(3)

where βi = gi · β0 with gi being the gain used to capture

frame i and β0 being proportional to the base noise level of

the camera. In Eq. (3), we note

• The first term assigns larger weight to pixels from

cleaner frames. This weighting scheme facilitates us-

ing the high quality frames to better enhance the nois-

ier frames; at the same time, it discourages using the

noisy frames to compromise the high quality frames

during the denoising process.

• The exponential term assigns smaller weight to pix-

els that came from optical flows with poorer block

matches. The distance between two patches (where

a patch is denoted by P (·)) is computed using a

weighted SSD as in [13].

In addition to having the exponential term based on the

patch distance, we use a threshold,

τt = m · βt + τ0, (4)

to reject pixels with large patch distances. The linear form

and parameters for τt were determined empirically by max-

imizing the PSNR of a simulated video sequence. With

pixel intensities in the range [0, 1], we used m = 0.051 and

τ0 = −1.9 · 10−3. The negative value for τ0 yields zero or

negative patch distance threshold τt for clean frames (which

have small βt) and, therefore, prevents the clean frames

from being degraded by lower quality neighboring frames

and/or inaccurate flows.

Combining Spatial and Temoral Denoising To combine

the spatial and temporal denoising results, we linearly inter-

polate using the number of frames with consistent flow |Hc|
as the weight:

Î(zt) =
|Hc|

2H
ÎT (zt) +

(

1−
|Hc|

2H

)

ÎS(zt). (5)

When a pixel does not have any consistent flows, we rely

purely on the CBM3D estimate. When a pixel has per-

fectly consistent flows (within the temporal window), we

rely purely on the temporal estimate.

3.1. Efficient Flow for Large Motion

Now we describe how we compute optical flow for de-

noising in our experiments. Optical flow is not our techni-

cal contribution; we describe it so that our paper is repro-

ducible.
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In real videos, we found that flow vectors can easily

be 70 pixels or more. This large motion easily confounds

many top performing flow algorithms evaluated in [1], as

the benchmark data sets typically only have flow magnitude

of 20 pixels or less. For example, we tried the flow algo-

rithm [12] used in [13] as input for video denoising. The

algorithm does not produce correct flow for a typical pair

of frames with large motion as shown in Figure 2. We be-

lieve this is because most flow algorithms use derivative-

based continuous optimization which is easily trapped in

local minima, even if an image pyramid is used. To handle

large motions in our video, we use a traditional hierarchical

block matching technique to compute our flow.

We start by constructing image pyramids of the two

frames under consideration (with a factor of two between

each level). At the coarsest level, we perform block match-

ing with a search window of size M×M . Next, we upsam-

ple the flow field and refine it by searching within a smaller

window at the next coarsest level of the pyramid. We use a

three level image pyramid with M=61 for the coarse block

matching and a 7x7 search window for refinement. These

parameters allow us to handle displacements of up to 120

pixels between consecutive frames.

We concatenate flows between neighboring frames to

initialize motion estimation between arbitrary frames, then

refine by block matching at the finest resolution only. We

found this simple method works well for handling large mo-

tion; an example of the flow result is shown in Figure 2.

4. Experimental Results

Our results are best viewed electronically in color.

More results, including videos, are available at

http://pages.cs.wisc.edu/~lizhang/projects/autoexpo/.

4.1. Synthetic Video

We first test our system on three different synthetic

video sequences. Each sequence is generated by mov-

ing a 512x512 window around a large panoramic image

as shown in Figure 3. The motion of the windows have

speeds ranging from 0 to 750 pixels per second and undergo

two changes of direction. Motion-based exposure control is

simulated on the sequences to determine the optimal expo-

sure time T for each frame. If d is the displacement be-

tween the previous two frames and f is the frame rate, then

T = 1/(d · f). This results in one pixel of motion dur-

ing the camera’s exposure time. The actual exposure time

is clamped between 1 ms and 1/f , where we use f = 7.5
frames per second. Once the exposure time has been set,

we adjust the gain to keep a constant brightness level. We

then add white Gaussian noise to the current frame with

σ = g ·σ0 where σ0 is chosen such that σ = 25 (out of 255)

for the shortest exposure time. We also generate videos with

constant short and long exposure times for comparison.

Frame 1 Frame 2 Frame 3

Liu [12] Our method

Liu [12] Our method
Figure 2. Optical flow results for three consecutive frames in the

mountain scene. Top: The displacement between frames 1 and 2 is

large, whereas the displacement between frames 2 and 3 is small.

Middle: Our optical flow outperforms the optical flow in [12] for

large displacements. The left to right motion causes the pixels on

the left edge of frame 1 to be invisible in frame 2, which is why our

flow is inaccurate on that edge. Bottom: The optical flow in [12]

outperforms our method for small displacements by producing a

smoother flow. Best viewed electronically in color.

We run the input sequences through CBM3D and [13]

using the known σ values for each frame. Since the flow

method used by [13] does not perform well on the large

motion in our sequences, we use our flow as input to their

denoising algorithm for a fair comparison. For our algo-

rithm, we use β0 = 0.01 in Eq. (3) (with pixel intensities

in the range [0, 1]). The value for β0 was found empirically

to provide full denoising power without sacrificing texture

preservation.

The per frame PSNRs can be seen in Figure 4 for the

city and mountain sequences and in Figure 1 for the station

sequence. Our algorithm provides higher PSNR than the

state-of-the-art algorithms for all of the frames containing

significant noise levels.

The improvements in our results over CBM3D are pri-

marily made in the regions with unique texture and struc-

ture, as can be seen in Figure 5 and Figure 6. In these re-
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City scene Mountain scene
Figure 3. Our synthetic video sequences are generated from panoramic images. A 512x512 pixel window follows the trajectory shown in

red. The motion in each sequence has variable speed and undergoes multiple direction changes.Best viewed electronically in color.

gions the optical flow is reliable, thus temporal denoising

is effective. The weights between the temporal and spatial

estimates are shown in Figure 7. In smooth regions where

our optical flow is unreliable, our denoising algorithm falls

back on CBM3D which performs well on smooth regions.

For completeness, we also run our denoising algorithm

and [13] on the city sequence using both their flow method

and the ground truth flow. In all cases, our denoising

method outperforms the denoising method in [13]. When

using their flow method, the frames with large motion have

inaccurate flow. Our method is more robust to the flow

inaccuracy (PSNR = 36.70 dB for our method, 33.25 dB

for their method). When using the ground truth flow, our

method better preserves detail by making use of the good

flows and not relying on spatial denoising (PSNR = 39.23

dB for our method, 36.59 dB for their method). Visual com-

parisons can be seen in the supplementary material.

4.2. Real Video

To test our system on a real video sequence, we first

needed motion-based AE. We implemented the motion es-

timation portion of the exposure control algorithm using a

standard hierarchical image registration technique. The re-

mainder of the AE algorithm works just as described for the

synthetic video. Since the image registration only tracks

global translational motion, we designed our real experi-

ment to have primarily translational motion. We set up two

cameras facing out the side window of an automobile. One

camera, a Canon EOS 7D, used a constant exposure time of

1/30 seconds, and the other camera, a Point Grey Grasshop-

per, used motion-based AE. As shown in Figure 8, our algo-

rithm preserves detail better than [13], because optical flow

is hard to estimate reliably in the presence of large motion,

multiple depth layers, and thin structure. Our method mea-

sures flow reliability and is robust to inaccurate flow input.

We also ran our denoising algorithm on the videos

from [13] using both our flow method and their flow

method. These videos were not captured using motion-

based AE and contain relatively small motion. As a result,

the smoother flow of [13] enables our denoising method to

achieve better temporal consistency in smooth regions. See

our supplementary material for video comparisons.
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(a) City scene
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(b) Mountain scene
Figure 4. PSNR results for the synthetic video sequences. In

frames with significant noise levels, our algorithm outperforms

other state-of-the-art denoising algorithms. Best viewed electron-

ically in color.

5. Conclusion

In this paper, we have proposed a high quality video

denoising algorithm in the context of motion-based expo-

sure control. Unlike previous denoising works which either
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(a) Constant exposure time (b) Noisy input (c) CBM3D

(d) Liu and Freeman (e) Our algorithm (f) Ground truth
Figure 5. A close-up of results from the city sequence. The motion-based AE provides a sharp but noisy image, shown in (b), as opposed to

the blurry image captured with a constant exposure time, shown in (a). Our denoising algorithm outperforms CBM3D [7] (applied to each

individual frame using corresponding frame noise variance) and Liu and Freeman [13] (using the known noise variance for each individual

frame). More detail is preserved in the roof and windows. Best viewed electronically in color.

avoid using motion estimation, such as BM3D [7], or as-

sume reliable motion estimation as input, such as [13], our

method uses the reliability of the optical flow as a weight

to integrate spatial denoising and temporal denoising. This

weighted combination scheme (1) makes our method robust

to optical flow failures over regions with repetitive texture

or uniform color, (2) combines the advantages of both spa-

tial and temporal denoising, and (3) outperform the state of

the art. There are several avenues for future research.

First, we would like to investigate better weighting

schemes. In the current formulation, when there are no

frames with reliable flow, the algorithm resorts to CBM3D;

in this case, temporal coherence is not enforced. This dif-

fers from [13], which uses smooth optical flow to obtain

temporal consistency in the presence of structural noise.

However, as Figures 5, 6, and 8 show, this temporal con-

sistency is obtained at the expense of sacrificing texture de-

tails. Furthermore, the lack of temporal consistency in our

results is not as noticeable since the motion-based exposure

control only produces noisy frames when there is large mo-

tion. Nevertheless, if video stabilization is applied to the

captured video, the temporal inconsistency is still notice-

able. Therefore, more research is needed to obtain temporal

consistency while still preserving spatial detail.

Second, although motion-based AE reduces motion blur

significantly, it does not completely eliminate motion blur

because exposure is set based on the motion of previous

frames; there is always a delay. It is desirable to use the

noisy frames and/or high quality frames to enhance motion

blur in a video captured with motion-based AE.

Third, it will be useful to investigate a real-time imple-

mentation of this approach so that denoising can be exe-

cuted before compression. Our approach has the potential

to be implemented in real time as all components are block-

based; no complex optimization, such as conjugate gradi-

ent, is involved in the optical flow estimation.
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(a) Constant exposure time (b) Noisy input (c) CBM3D

(d) Liu and Freeman (e) Our algorithm (f) Ground truth
Figure 6. A close-up of results from the mountain sequence. Both CBM3D [7] and [13] over-smooth the tree branches and grass. Our

algorithm preserves the fine structures and texture. Best viewed electronically in color.

Denoised frame Weight map Denoised frame Weight map
Figure 7. Two weight maps from the synthetic sequences. Lighter colors denote pixels that rely more on temporal denoising than spatial

denoising. The darker regions in the weight maps correspond to smooth regions of the image where optical flow trajectory is less reliable.

The horizontal motion in the video sequences causes the sides of the image to be invisible in neighboring frames, which is why we see the

vertical bands of constant weight. Best viewed electronically in color.
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