Laminar Flow in Microfluidic Channels

D. Cheng, J. Greenwood, X. Zeng, C. Lo, S. S. Sridharamurthy, L. Dong, Y. Choe, T. Khang, A. Arteaga, and H. Jiang

Department of Electrical and Computer Engineering, University of Wisconsin-Madison, USA

Madison, WI, Apr. 19th – 21st, 2007

Laminar and Turbulent Flow

- What is Laminar Flow?
 - Layers of liquid that flow in a uniform fashion
 - Layers do not mix with neighboring layers
 - Opposite of turbulent flow

Laminar Flow

Turbulent Flow

Laminar vs. Turbulent Flow

Sink

- A sink can display both laminar and turbulent flow
- Lets watch a **Movie**!!!!

 Start with two syringes filled with blue and yellow water

Start to press the liquid into the channel

• The fluid star to flow in the Microchannel

What Happens Netf

Flow Chart for Microfluidic channel

- It does not mix immediately because it is in laminar flow
- This is due to its small size of the channel

Reynolds Number and Stokes Flow

• Reynolds number is a ratio between inertial force (ρv_s) and viscous force (μ/L) .

 $Re = rac{
ho v_s L}{\mu} = rac{v_s L}{
u} = rac{
m Inertial \ forces}{
m Viscous \ forces}$

- Defines if a liquid will be laminar (Reynolds < <1) and turbulent (Reynolds >> 1) flow.
- In Microfluidics the Length (L) or Diameter of the channel is what dominates the equation causing a low Reynolds number.
 - This is also called Stokes flow

Large vs. Micro

- When dealing with cup of water the dominate force acting on the water is gravity causing the water to be turbulent.
- Where as in microchannels gravity is overcome by surface tension and capillary forces.
 - Surface tension is an effect within the surface layer of a liquid that causes that layer to behave as an elastic sheet
 - Capillary force is the ability of a substance to draw another substance into it

Oil and Water

- What will happen if you drop some ink into a glass of water?
- What will happen if you drop some olive oil into the water?

Micro Actuators Lab Images and text from wikipedia.org

Laminar Flow in Our Daily Life

- Airplanes
 - Air flow from the wings has both laminar and turbulent flow

- Golfing
 - Airflow around the golf ball has both laminar and turbulent flow

